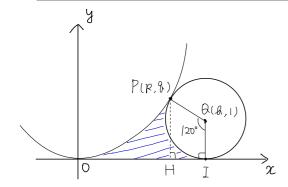
- [3] 放物線 $y=ax^2$ (a>0) と円 $(x-b)^2+(y-1)^2=1$ (b>0) が、点 P(p,q) で接しているとする。ただし、0< p< b とする。この円の中心 Q から x 軸に下ろした垂線と x 軸との交点を R としたとき、 $\angle PQR=120^\circ$ であるとする。ここで、放物線と円が点 P で接するとは、 P が放物線と円の共有点であり、かつ点 P における放物線の接線と点 P における円の接線が一致することである。
- (1) a, b の値を求めよ。
- (2) 点 P と 点 R を結ぶ 短い方の 弧と x 軸、および 放物線 で 囲まれた 部分の 面積を 求め よ。



(1)
$$R = \sqrt{3}$$
, $8 = \frac{3}{2}$ $Q = \frac{1}{2}$, $A = \frac{3\sqrt{3}}{2}$

(2) (1) (1)

$$f(\alpha) = \frac{x^2}{2}, P(\sqrt{3}, \frac{3}{2}), Q(\frac{3\sqrt{3}}{2}, 1) \tau \tilde{\sigma} \delta.$$

 $H(\sqrt{3},0)$, $I(\frac{3\sqrt{3}}{2},0)$ とし,求'める面積をぷとすると.

$$S = \int_0^{\sqrt{3}} \frac{1}{2} x^2 dx + \frac{1}{2} \left(\frac{3}{2} + 1 \right) \left(\frac{3\sqrt{3}}{2} - \sqrt{3} \right) - \pi \cdot 1^2 \cdot \frac{1}{3}$$

$$= \left[\frac{1}{6}\chi^3\right]_0^3 + \frac{5\sqrt{3}}{8} - \frac{\pi}{3}$$

$$=\frac{9\sqrt{3}}{8}-\frac{\pi}{3}$$