1．［センター追試］
平面上の四角形 OABC において，$|\overrightarrow{\mathrm{OA}}|=2,|\overrightarrow{\mathrm{OB}}|=3,|\overrightarrow{\mathrm{OC}}|=1$ ， $\angle \mathrm{AOB}=\angle \mathrm{BOC}=60^{\circ}$ であるとする。点 P が
$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=\frac{5}{4}$
を満たしながら動くとき，三角形 OCP の面積の最小値を求めよう。以下， $\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}, \overrightarrow{\mathrm{OP}}=\vec{p}$ とおく。
まず，点 P の動く範囲を考えよう。（1）は，$(\vec{a}-\vec{p}) \cdot(\vec{b}-\vec{p})=\frac{5}{4}$ であるから，
$\vec{a} \cdot \vec{b}=$ ア に注意すると $|\vec{p}|^{2}-(\vec{a}+\vec{b}) \cdot \vec{p}+\frac{\text { イ }}{\square \text { ウ }}=0$ と書き換えられる。 これはさらに $\left|\vec{p}-\frac{\vec{a}+\vec{b}}{\square \text { エ }}\right|=\sqrt{\square \text { オ }}$ と書き換えられる。点 M を $\overrightarrow{\mathrm{OM}}=\frac{\vec{a}+\vec{b}}{\square \text { エ }}$ となるように定めると，点 P は， M を中心とする半径 $\sqrt{\square \text { 才 }}$ の円周上を動く。次に，点 P と直線 OC の距離について考えよう。直線 OC 上の点 H を $\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{MH}}$ となる ようにとる。実数 t を用いて $\overrightarrow{\mathrm{OH}}=t \overrightarrow{\mathrm{OC}}$ と表すと， $\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{MH}}=\square$ 力 であることから，
満たしながら動くとき，点 P と直線 OC の距離の最小値は $\frac{\sqrt{\square シ}}{\square \text { ス }}$ となる。 したがって，三角形 OCP の面積の最小値は $\frac{\sqrt{\square セ}}{\square ソ}$ である。

2．［岡山大］
平面上の異なる 3 点 $\mathrm{O}, \mathrm{A}, \mathrm{B}$ は同一直線上にないものとする。 この平面上の点 P が

$$
2|\overrightarrow{\mathrm{OP}}|^{2}-\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}}-\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0
$$

を満たすとき，次の問いに答えよ。
（1） P の軌跡が円となることを示せ。
（2）（1）の円の中心を C とするとき， $\overrightarrow{\mathrm{OC}}$ を $\overrightarrow{\mathrm{OA}}$ と $\overrightarrow{\mathrm{OB}}$ で表せ。
（3）O との距離が最小となる（1）の円周上の点を P_{0} とする。A，B が条件

$$
|\overrightarrow{\mathrm{OA}}|^{2}+5 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}+4|\overrightarrow{\mathrm{OB}}|^{2}=0
$$

を満たすとき， $\overrightarrow{\mathrm{OP}}_{0}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$ となる s ，t の值を求めよ。

