円のベクトル方程式 解答

1．［センター追試］

$|\vec{a}|=2,|\vec{b}|=3, \angle \mathrm{AOB}=60^{\circ}$ から
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos 60^{\circ}=2 \cdot 3 \cdot \frac{1}{2}={ }^{\text { }} 3$
$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=\frac{5}{4} \cdots \cdots$（1）から

$$
\begin{aligned}
& (\vec{a}-\vec{p}) \cdot(\vec{b}-\vec{p})=\frac{5}{4} \\
& |\vec{p}|^{2}-(\vec{a}+\vec{b}) \cdot \vec{p}+\vec{a} \cdot \vec{b}=\frac{5}{4}
\end{aligned}
$$

$\vec{a} \cdot \vec{b}=3$ を代入して $\quad|\vec{p}|^{2}-(\vec{a}+\vec{b}) \cdot \vec{p}+3=\frac{5}{4}$
よって，（1）は $|\vec{p}|^{2}-(\vec{a}+\vec{b}) \cdot \vec{p}+\frac{17}{{ }^{5} 4}=0$
さらに，変形して $\quad\left|\vec{p}-\frac{\vec{a}+\vec{b}}{2}\right|^{2}-\frac{|\vec{a}+\vec{b}|^{2}}{4}+\frac{7}{4}=0 \quad \ldots \ldots$. （2）
ここで $\quad|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=4+2 \cdot 3+9=19 \quad \cdots \cdots$（3）
ゆえに，（2）から $\left|\vec{p}-\frac{\vec{a}+\vec{b}}{2}\right|^{2}-\frac{19}{4}+\frac{7}{4}=0$
よって $\left|\vec{p}-\frac{\vec{a}+\vec{b}}{2}\right|^{2}=3$
$\left|\vec{p}-\frac{\vec{a}+\vec{b}}{2}\right|>0$ であるから $\quad\left|\vec{p}-\frac{\vec{a}+\vec{b}}{د_{2}}\right|=\sqrt{\text { 才 } 3}$
したがって，点 M を $\overrightarrow{\mathrm{OM}}=\frac{\vec{a}+\vec{b}}{2}$ となるように定めると，点 P は， M を中心とする半径 $\sqrt{3}$ の円周上を動く。
$\overrightarrow{\mathrm{OC}}=\vec{c}$ とおくと，$|\vec{c}|=1, \angle \mathrm{BOC}=60^{\circ}$ から

$$
\vec{b} \cdot \vec{c}=|\vec{b}||\vec{c}| \cos 60^{\circ}=3 \cdot 1 \cdot \frac{1}{2}=\frac{3}{2}
$$

$\vec{a} \cdot \vec{c}=|\vec{a}||\vec{c}| \cos 120^{\circ}=2 \cdot 1 \cdot\left(-\frac{1}{2}\right)=-1$
$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{MH}}$ より $\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{MH}}=$ 加 0 であるから
$\overrightarrow{\mathrm{OC}} \cdot(\overrightarrow{\mathrm{OH}}-\overrightarrow{\mathrm{OM}})=0$
$\vec{c} \cdot\left(\overrightarrow{t c}-\frac{\vec{a}+\vec{b}}{2}\right)=0$
$t|\vec{c}|^{2}-\frac{1}{2}(\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c})=0$

$$
t \cdot 1^{2}-\frac{1}{2}\left(-1+\frac{3}{2}\right)=0 \quad \text { これを解いて } \quad t=\frac{{ }^{*} 1}{{ }^{\prime}} 4
$$

よって $\quad|\overrightarrow{\mathrm{OH}}|=\frac{1}{4}|\vec{c}|=\frac{1}{4}$
また，（3）から $\quad|\overrightarrow{\mathrm{OM}}|=\left|\frac{\vec{a}+\vec{b}}{2}\right|=\frac{|\vec{a}+\vec{b}|}{2}=\frac{\sqrt{19}}{2}$
直角三角形 OMHにおいて，三平方の定理により

$$
|\overrightarrow{\mathrm{MH}}|=\sqrt{\left(\frac{\sqrt{19}}{2}\right)^{2}-\left(\frac{1}{4}\right)^{2}}=\sqrt{\frac{75}{16}}=\frac{55 \sqrt{7} 3}{{ }^{7} 4}
$$

M を中心とする半径 $\sqrt{3}$ の円と直線 MH の交点のうち， H に近い方を P^{\prime} とすると，点 P と直線 OC の距離が最小になるのは， P が P^{\prime} と一致するときである。
よって，点 P と直線 OC の距離の最小值は
$\mathrm{P}^{\prime} \mathrm{H}=\mathrm{MH}-\mathrm{MP}^{\prime}=\frac{5 \sqrt{3}}{4}-\sqrt{3}=\frac{\sqrt{{ }^{\star}} 3}{{ }^{3} 4}$
したがって，$\triangle \mathrm{OCP}$ の面積の最小値は

$$
\frac{1}{2} \cdot \mathrm{OC} \cdot \mathrm{P}^{\prime} \mathrm{H}=\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{3}}{4}=\frac{\sqrt{{ }^{t} 3}}{{ }^{\prime} 8}
$$

別檞［ $|\overrightarrow{\mathrm{MH}}|$ の求め方］
$\overrightarrow{\mathrm{MH}}=\frac{\vec{c}}{4}-\frac{\vec{a}+\vec{b}}{2}=-\frac{2 \vec{a}+2 \vec{b}-\vec{c}}{4}$ であるから

$$
\begin{aligned}
|\overrightarrow{\mathrm{MH}}|^{2} & =\left|\frac{2 \vec{a}+2 \vec{b}-\vec{c}}{4}\right|^{2}=\frac{1}{16}\left(4|\vec{a}|^{2}+4|\vec{b}|^{2}+|\vec{c}|^{2}+8 \vec{a} \cdot \vec{b}-4 \vec{b} \cdot \vec{c}-4 \vec{a} \cdot \vec{c}\right) \\
& =\frac{1}{16}(16+36+1+24-6+4)=\frac{75}{16}
\end{aligned}
$$

$|\overrightarrow{\mathrm{MH}}|>0$ であるから $|\overrightarrow{\mathrm{MH}}|=\sqrt{\frac{75}{16}}=\frac{{ }^{5} 5 \sqrt{7} 3}{{ }^{7} 4}$

2．［岡山大］
（1） $\overrightarrow{\mathrm{OP}}=\vec{p}, \overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$ とする。
与えられた等式から $2|\vec{p}|^{2}-(\vec{a}-2 \vec{b}) \cdot \vec{p}-\vec{a} \cdot \vec{b}=0$
これを変形すると $\quad|\vec{p}|^{2}-\left(\frac{\vec{a}-2 \vec{b}}{2}\right) \cdot \vec{p}=\frac{\vec{a} \cdot \vec{b}}{2}$

$$
\left|\vec{p}-\frac{\vec{a}-2 \vec{b}}{4}\right|^{2}=\frac{\vec{a} \cdot \vec{b}}{2}+\left|\frac{\vec{a}-2 \vec{b}}{4}\right|^{2}
$$

$$
\left|\vec{p}-\frac{\vec{a}-2 \vec{b}}{4}\right|^{2}=\left|\frac{\vec{a}+2 \vec{b}}{4}\right|^{2}
$$

よって $\quad\left|\vec{p}-\frac{\vec{a}-2 \vec{b}}{4}\right|=\left|\frac{\vec{a}+2 \vec{b}}{4}\right|$
ゆえに，点 C を $\overrightarrow{\mathrm{OC}}=\frac{\vec{a}-2 \vec{b}}{4}$ で定めると， P の軌跡は C を中心とする半径 $\left|\frac{\vec{a}+2 \vec{b}}{4}\right|$ の円となる。
（2）（1）加 $\overrightarrow{\mathrm{OC}}=\frac{\vec{a}-2 \vec{b}}{4}=\frac{1}{4} \overrightarrow{\mathrm{OA}}-\frac{1}{2} \overrightarrow{\mathrm{OB}}$
（3）$|\overrightarrow{\mathrm{OA}}|^{2}+5 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}+4|\overrightarrow{\mathrm{OB}}|^{2}=0$ から $\quad|\vec{a}|^{2}+5 \vec{a} \cdot \vec{b}+4|\vec{b}|^{2}=0$ よって $\quad|\vec{a}|^{2}+4|\vec{b}|^{2}=-5 \vec{a} \cdot \vec{b}$
（1）の円の半径を r とすると

$$
\begin{aligned}
r^{2} & =\left|\frac{\vec{a}+2 \vec{b}}{4}\right|^{2}=\frac{1}{16}\left(|\vec{a}|^{2}+4 \vec{a} \cdot \vec{b}+4|\vec{b}|^{2}\right) \\
& =\frac{1}{16}(-5 \vec{a} \cdot \vec{b}+4 \vec{a} \cdot \vec{b})=-\frac{1}{16} \vec{a} \cdot \vec{b}
\end{aligned}
$$

$$
|\overrightarrow{\mathrm{OC}}|^{2}=\left|\frac{\vec{a}-2 \vec{b}}{4}\right|^{2}=\frac{1}{16}\left(|\vec{a}|^{2}-4 \vec{a} \cdot \vec{b}+4|\vec{b}|^{2}\right)
$$

$$
=\frac{1}{16}(-5 \vec{a} \cdot \vec{b}-4 \vec{a} \cdot \vec{b})=-\frac{9}{16} \vec{a} \cdot \vec{b}
$$

よって $|\overrightarrow{\mathrm{OC}}|^{2}=9 r^{2}$ ゆえに $|\overrightarrow{\mathrm{OC}}|=3 r$
$|\overrightarrow{\mathrm{OC}}|>r$ であるから，点 O は（1）の円の外部にあり， P_{0} は この円と線分 OC の交点である。
よって $\quad \mathrm{OP}_{0}: \mathrm{P}_{0} \mathrm{C}=(3 r-r): r=2: 1$
ゆえに $\quad \overrightarrow{\mathrm{OP}_{0}}=\frac{2}{3} \overrightarrow{\mathrm{OC}}=\frac{2}{3}\left(\frac{1}{4} \overrightarrow{\mathrm{OA}}-\frac{1}{2} \overrightarrow{\mathrm{OB}}\right)=\frac{1}{6} \overrightarrow{\mathrm{OA}}-\frac{1}{3} \overrightarrow{\mathrm{OB}}$
3 点 $\mathrm{O}, \mathrm{A}, \mathrm{B}$ は異なる点で同一直線上にないから， $\overrightarrow{\mathrm{OA}} \neq \overrightarrow{0}$ ，
$\overrightarrow{\mathrm{OB}} \neq \overrightarrow{0}, \overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}$ であり， $\overrightarrow{\mathrm{OP}_{0}}$ の $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ を用いた表し方はた だ1通りである。

よって， $\overrightarrow{\mathrm{OP}_{0}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$ となる s ，t の値は

$$
s=\frac{1}{6}, t=-\frac{1}{3}
$$

