積分法 演習プリント No． 2

1．［クリアー数学III 問題283（3）（4）問題284（1）（3）］
次の定積分を求めよ。
（1） $\int_{0}^{\frac{1}{3}} \frac{d x}{(3 x+1)^{2}}$
（2） $\int_{3}^{5} \frac{d x}{\sqrt{2 x-1}}$
（3） $\int_{0}^{1} \frac{x^{2}+x+1}{x+1} d x$
（4） $\int_{-1}^{1} \frac{d x}{x^{2}-5 x+6}$
（1） $\int_{0}^{\frac{1}{3}} \frac{d x}{(3 x+1)^{2}}=\int_{0}^{\frac{1}{3}}(3 x+1)^{-2} d x=\left[\frac{1}{3} \cdot\left\{-(3 x+1)^{-1}\right\}\right]_{0}^{\frac{1}{3}}$

$$
=-\frac{1}{3}\left[\frac{1}{3 x+1}\right]_{0}^{\frac{1}{3}}=-\frac{1}{3}\left(\frac{1}{2}-1\right)=\frac{1}{6}
$$

（2） $\int_{3}^{5} \frac{d x}{\sqrt{2 x-1}}=\int_{3}^{5}(2 x-1)^{-\frac{1}{2}} d x=\left[\frac{1}{2} \cdot\left\{2(2 x-1)^{\frac{1}{2}}\right\}\right]_{3}^{5}$

$$
=[\sqrt{2 x-1}]_{3}^{5}=3-\sqrt{5}
$$

（3） $\int_{0}^{1} \frac{x^{2}+x+1}{x+1} d x=\int_{0}^{1}\left(x+\frac{1}{x+1}\right) d x=\left[\frac{x^{2}}{2}+\log |x+1|\right]_{0}^{1}=\frac{1}{2}+\log 2$
（4） $\int_{-1}^{1} \frac{d x}{x^{2}-5 x+6}=\int_{-1}^{1} \frac{d x}{(x-2)(x-3)}=\int_{-1}^{1}\left(\frac{1}{x-3}-\frac{1}{x-2}\right) d x$
$=[\log |x-3|-\log |x-2|]_{-1}^{1}=\left[\log \left|\frac{x-3}{x-2}\right|\right]_{-1}^{1}$

$$
=\log 2-\log \frac{4}{3}=\log \frac{3}{2}
$$

2．［クリアー数学III 問題285（2）（3）（4）（5）問題292（2）］

次の定積分を求めよ。（1） $\int_{0}^{\frac{\pi}{2}} \sin \frac{5}{2} x \sin \frac{x}{2} d x$
（2） $\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x$
（3） $\int_{-\frac{\pi}{2}}^{\pi} \sin ^{2} 2 x d x$
（4） $\int_{0}^{\frac{\pi}{3}} \tan ^{2} x d x$
5） $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{2-\cos x} d x$
（1） $\int_{0}^{\frac{\pi}{2}} \sin \frac{5}{2} x \sin \frac{x}{2} d x=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(\cos 3 x-\cos 2 x) d x=-\frac{1}{2}\left[\frac{\sin 3 x}{3}-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}$

$$
=-\frac{1}{2}\left(-\frac{1}{3}-0\right)=\frac{1}{6}
$$

（2） $\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x=\int_{0}^{\frac{\pi}{4}} \frac{1+\cos 2 x}{2} d x=\frac{1}{2}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2}\right)=\frac{\pi}{8}+\frac{1}{4}$
（3） $\int_{-\frac{\pi}{2}}^{\pi} \sin ^{2} 2 x d x=\int_{-\frac{\pi}{2}}^{\pi} \frac{1-\cos 4 x}{2} d x=\frac{1}{2}\left[x-\frac{\sin 4 x}{4}\right]_{-\frac{\pi}{2}}^{\pi}=\frac{1}{2}\left\{\pi-\left(-\frac{\pi}{2}\right)\right\}=\frac{3}{4} \pi$
（4） $\int_{0}^{\frac{\pi}{3}} \tan ^{2} x d x=\int_{0}^{\frac{\pi}{3}}\left(\frac{1}{\cos ^{2} x}-1\right) d x=[\tan x-x]_{0}^{\frac{\pi}{3}}=\sqrt{3}-\frac{\pi}{3}$
（5） $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{2-\cos x} d x=\int_{0}^{\frac{\pi}{2}} \frac{(2-\cos x)^{\prime}}{2-\cos x} d x=[\log |2-\cos x|]_{0}^{\frac{\pi}{2}}=\log 2$

3．［クリアー数学III問題291

次の定積分を求めよ。
（1） $\int_{1}^{2} x\left(x^{2}-1\right)^{3} d x$
（2） $\int_{-1}^{0} x \sqrt{x+1} d x$
（3） $\int_{-\sqrt{3}}^{0} \frac{2 x}{\sqrt{4-x^{2}}} d x$
（1）$x^{2}-1=t$ とおくと $\quad 2 x d x=d t$
よって
$\int_{1}^{2} x\left(x^{2}-1\right)^{3} d x=\frac{1}{2} \int_{1}^{2} 2 x\left(x^{2}-1\right)^{3} d x$

x	$1 \longrightarrow 2$
t	$0 \longrightarrow 3$

$$
=\frac{1}{2} \int_{0}^{3} t^{3} d t=\frac{1}{2}\left[\frac{t^{4}}{4}\right]_{0}^{3}=\frac{81}{8}
$$

（2）$\sqrt{x+1}=t$ とおくと $\quad x=t^{2}-1, d x=2 t d t$ よって

$$
\begin{aligned}
\int_{-1}^{0} x \sqrt{x+1} d x & =\int_{0}^{1}\left(t^{2}-1\right) t \cdot 2 t d t \\
& =2 \int_{0}^{1}\left(t^{4}-t^{2}\right) d t=2\left[\frac{t^{5}}{5}-\frac{t^{3}}{3}\right]_{0}^{1} \\
& =2\left(\frac{1}{5}-\frac{1}{3}\right)=-\frac{4}{15}
\end{aligned}
$$

（3） $4-x^{2}=t$ とおくと $\quad-2 x d x=d t$
よって

$$
\begin{aligned}
\int_{-\sqrt{3}}^{0} \frac{2 x}{\sqrt{4-x^{2}}} d x & =-\int_{1}^{4} \frac{d t}{\sqrt{t}}=-\left[2 t^{\frac{1}{2}}\right]_{1}^{4} \\
& =-2[\sqrt{t}]_{1}^{4}=-2(2-1)=-2
\end{aligned}
$$

4．［クリアー数学III 問題293］

（1） $\int_{0}^{3} \sqrt{9-x^{2}} d x$
（2） $\int_{-\frac{\sqrt{2}}{2}}^{1} \sqrt{2-x^{2}} d x$
（3） $\int_{-1}^{1} \frac{d x}{\sqrt{4-x^{2}}}$
（1）$x=3 \sin \theta$ とおくと $\quad d x=3 \cos \theta d \theta$
x と θ の対応は右のようにとれる。
また， $0 \leqq \theta \leqq \frac{\pi}{2}$ のとき $\cos \theta \geqq 0$ であるから

x	$0 \longrightarrow 3$
θ	$0 \longrightarrow \frac{\pi}{2}$

$$
\sqrt{9-x^{2}}=\sqrt{9\left(1-\sin ^{2} \theta\right)}
$$

$=\sqrt{9 \cos ^{2} \theta}=3 \cos \theta$
よって
$\int_{0}^{3} \sqrt{9-x^{2}} d x=\int_{0}^{\frac{\pi}{2}}(3 \cos \theta) \cdot 3 \cos \theta d \theta$

$$
\begin{aligned}
& =9 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=9 \int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta \\
& =\frac{9}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{9}{4} \pi
\end{aligned}
$$

参房 求める定積分の值は，半径 3 の円の面積の $\frac{1}{4}$ であるから $\quad \frac{1}{4} \pi \cdot 3^{2}=\frac{9}{4} \pi$
（2）$x=\sqrt{2} \sin \theta$ とおくと $\quad d x=\sqrt{2} \cos \theta d \theta$ x と の対応は右のようにとれる
また，$-\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{4}$ のとき $\cos \theta \geqq 0$ であるから

$$
\sqrt{2-x^{2}}=\sqrt{2\left(1-\sin ^{2} \theta\right)}
$$

| x | $-\frac{\sqrt{2}}{2} \longrightarrow 1$ |
| :--- | :--- | :--- |
| θ | $-\frac{\pi}{6} \longrightarrow \frac{\pi}{4}$ |

$=\sqrt{2 \cos ^{2} \theta}=\sqrt{2} \cos \theta$
よって

$$
\begin{aligned}
\int_{-\frac{\sqrt{2}}{2}}^{1} \sqrt{2-x^{2}} d x & =\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}}(\sqrt{2} \cos \theta) \cdot \sqrt{2} \cos \theta d \theta \\
& =2 \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \cos ^{2} \theta d \theta=2 \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1+\cos 2 \theta}{2} d \theta \\
& =\left[\theta+\frac{\sin 2 \theta}{2}\right]_{-\frac{\pi}{6}}^{\frac{\pi}{4}}=\frac{5}{12} \pi+\frac{1}{2}+\frac{\sqrt{3}}{4}
\end{aligned}
$$

（3）$x=2 \sin \theta$ とおくと $\quad d x=2 \cos \theta d \theta$
x と θ の対応は右のようにとれる。
また，$-\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{6}$ のとき $\cos \theta \geqq 0$ であるから

x	$-1 \longrightarrow 1$
θ	$-\frac{\pi}{6} \longrightarrow \frac{\pi}{6}$

$$
\sqrt{4-x^{2}}=\sqrt{4\left(1-\sin ^{2} \theta\right)}
$$

$$
=\sqrt{4 \cos ^{2} \theta}=2 \cos \theta
$$

よって

$$
\int_{-1}^{1} \frac{d x}{\sqrt{4-x^{2}}}=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{2 \cos \theta}{2 \cos \theta} d \theta=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} d \theta=[\theta]_{-\frac{\pi}{6}}^{\frac{\pi}{6}}=\frac{\pi}{3}
$$

積分法 演習プリント No． 2

5．［クリアー数学III 問題294］

次の定積分を求めよ。
（1） $\int_{0}^{2 \sqrt{3}} \frac{d x}{x^{2}+4}$
（2） $\int_{\sqrt{3}}^{3 \sqrt{3}} \frac{d x}{x^{2}+9}$
（3） $\int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{3 x^{2}+6}$
（1）$x=2 \tan \theta$ とおくと $\quad d x=\frac{2}{\cos ^{2} \theta} d \theta$ x と θ の対応は右のようにとれる。
よって

$$
\begin{array}{c||cc}
\hline x & 0 \longrightarrow 2 \sqrt{3} \\
\hline \theta & 0 \longrightarrow \frac{\pi}{3} \\
\hline
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{2 \sqrt{3}} \frac{d x}{x^{2}+4} & =\int_{0}^{\frac{\pi}{3}} \frac{1}{4\left(\tan ^{2} \theta+1\right)} \cdot \frac{2}{\cos ^{2} \theta} d \theta \\
& =\int_{0}^{\frac{\pi}{3}} \frac{\cos ^{2} \theta}{4} \cdot \frac{2}{\cos ^{2} \theta} d \theta \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{3}} d \theta=\frac{1}{2}[\theta]_{0}^{\frac{\pi}{3}}=\frac{\pi}{6}
\end{aligned}
$$

（2）$x=3 \tan \theta$ とおくと $\quad d x=\frac{3}{\cos ^{2} \theta} d \theta$
x と θ の対応は右のようにとれる。
よって

$$
\begin{aligned}
\int_{\sqrt{3}}^{3 \sqrt{3}} \frac{d x}{x^{2}+9} & =\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{9\left(\tan ^{2} \theta+1\right)} \cdot \frac{3}{\cos ^{2} \theta} d \theta \\
& =\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ^{2} \theta}{9} \cdot \frac{3}{\cos ^{2} \theta} d \theta \\
& =\frac{1}{3} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d \theta=\frac{1}{3}[\theta]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\frac{\pi}{18}
\end{aligned}
$$

（3） $\int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{3 x^{2}+6}=\frac{1}{3} \int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{x^{2}+2}$
$x=\sqrt{2} \tan \theta$ とおくと $\quad d x=\frac{\sqrt{2}}{\cos ^{2} \theta} d \theta$

$$
=\frac{e^{2}}{2}-\frac{1}{2 e^{2}}-\left(\left[\frac{x e^{2 x}}{2}\right]_{-1}^{1}-\int_{-1}^{1} \frac{e^{2 x}}{2} d x\right)
$$

x と θ の対応は右のようにとれる。
よって

$$
\begin{aligned}
\int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{3 x^{2}+6} & =\frac{1}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{2\left(\tan ^{2} \theta+1\right)} \cdot \frac{\sqrt{2}}{\cos ^{2} \theta} d \theta \\
& =\frac{1}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos ^{2} \theta}{2} \cdot \frac{\sqrt{2}}{\cos ^{2} \theta} d \theta \\
& =\frac{\sqrt{2}}{6} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d \theta=\frac{\sqrt{2}}{6}[\theta]_{\frac{\pi}{4}}^{\frac{\pi}{3}}=\frac{\sqrt{2}}{72} \pi
\end{aligned}
$$

6．［クリアー数学III問題301（1）（5）（6）問題303（2）］

次の定積分を求めよ。（1） $\int_{0}^{\frac{\pi}{2}} x \cos 3 x d x$
（2） $\int_{-4}^{-3} \log (x+5) d x$
（3） $\int_{1}^{e} x^{2} \log x d x$
（4） $\int_{-1}^{1} x^{2} e^{2 x} d x$
（1） $\int_{0}^{\frac{\pi}{2}} x \cos 3 x d x=\int_{0}^{\frac{\pi}{2}} x\left(\frac{\sin 3 x}{3}\right)^{\prime} d x=\left[\frac{x \sin 3 x}{3}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{\sin 3 x}{3} d x$

$$
=-\frac{\pi}{6}+\left[\frac{\cos 3 x}{9}\right]_{0}^{\frac{\pi}{2}}=-\frac{\pi}{6}-\frac{1}{9}
$$

（2） $\int_{-4}^{-3} \log (x+5) d x=\int_{-4}^{-3}(x+5)^{\prime} \log (x+5) d x$

$$
\begin{aligned}
& =[(x+5) \log (x+5)]_{-4}^{-3}-\int_{-4}^{-3}(x+5) \cdot \frac{1}{x+5} d x \\
& =2 \log 2-[x]_{-4}^{-3}=2 \log 2-1
\end{aligned}
$$

（3） $\int_{1}^{e} x^{2} \log x d x=\int_{1}^{e}\left(\frac{x^{3}}{3}\right)^{\prime} \log x d x$

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3} \log x\right]_{1}^{e}-\int_{1}^{e} \frac{x^{3}}{3} \cdot \frac{1}{x} d x=\frac{e^{3}}{3}-\int_{1}^{e} \frac{x^{2}}{3} d x \\
& =\frac{e^{3}}{3}-\left[\frac{x^{3}}{9}\right]_{1}^{e}=\frac{e^{3}}{3}-\frac{1}{9}\left(e^{3}-1\right)=\frac{2}{9} e^{3}+\frac{1}{9}
\end{aligned}
$$

（4） $\int_{-1}^{1} x^{2} e^{2 x} d x=\int_{-1}^{1} x^{2}\left(\frac{e^{2 x}}{2}\right)^{\prime} d x=\left[\frac{x^{2} e^{2 x}}{2}\right]_{-1}^{1}-\int_{-1}^{1} x e^{2 x} d x$

$$
=\frac{e^{2}}{2}-\frac{1}{2 e^{2}}-\int_{-1}^{1} x\left(\frac{e^{2 x}}{2}\right)^{\prime} d x
$$

$$
=\frac{e^{2}}{2}-\frac{1}{2 e^{2}}-\left(\frac{e^{2}}{2}+\frac{1}{2 e^{2}}\right)+\left[\frac{e^{2 x}}{4}\right]_{-1}^{1}
$$

$$
=-\frac{1}{e^{2}}+\left(\frac{e^{2}}{4}-\frac{1}{4 e^{2}}\right)=\frac{e^{2}}{4}-\frac{5}{4 e^{2}}
$$

