1．［クリアー数学I 問題305］

$0 \leqq \theta<2 \pi$ のとき，次の方程式，不等式を解け
1） $\sin 2 \theta=\cos \theta$
（2） $\cos 2 \theta=-\cos \theta$
3） $\cos 2 \theta-5 \cos \theta+3=0$
（4） $\sin 2 \theta<\sin \theta$
（5） $\cos 2 \theta+9 \sin \theta+4<0$
（6） $\cos 2 \theta>\sin \theta$

【コメント】
解答には入れていませんが，単位円を描いて考えましょう
（1）方程式を変形すると $2 \sin \theta \cos \theta=\cos \theta$
ゆえに $\quad \cos \theta(2 \sin \theta-1)=0$
よって $\cos \theta=0$ または $\sin \theta=\frac{1}{2}$
$0 \leqq \theta<2 \pi$ のとき

$$
\begin{array}{ll}
\cos \theta=0 \text { から } & \theta=\frac{\pi}{2}, \frac{3}{2} \pi \\
\sin \theta=\frac{1}{2} \text { から } & \theta=\frac{\pi}{6}, \frac{5}{6} \pi
\end{array}
$$

したがって，解は $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5}{6} \pi, \frac{3}{2} \pi$
（2）方程式を変形すると $2 \cos ^{2} \theta-1=-\cos \theta$
整理すると $2 \cos ^{2} \theta+\cos \theta-1=0$
すなわち $\quad(\cos \theta+1)(2 \cos \theta-1)=0$
よって $\cos \theta=-1$ または $\cos \theta=\frac{1}{2}$
$0 \leqq \theta<2 \pi$ のとき
$\cos \theta=-1$ から $\quad \theta=\pi$
$\cos \theta=\frac{1}{2}$ から $\quad \theta=\frac{\pi}{3}, \frac{5}{3} \pi$
したがって，解は $\theta=\frac{\pi}{3}, \pi, \frac{5}{3} \pi$
（3）方程式を変形すると $\left(2 \cos ^{2} \theta-1\right)-5 \cos \theta+3=0$
整理すると $2 \cos ^{2} \theta-5 \cos \theta+2=0$
すなわち $\quad(\cos \theta-2)(2 \cos \theta-1)=0$
$\cos \theta-2 \neq 0$ であるから $2 \cos \theta-1=0$
よって $\quad \cos \theta=\frac{1}{2}$
$0 \leqq \theta<2 \pi$ であるから $\quad \theta=\frac{\pi}{3}, \frac{5}{3} \pi$
（4）不等式を変形すると $2 \sin \theta \cos \theta<\sin \theta$
よって $\sin \theta(2 \cos \theta-1)<0$
 （ $\sin \theta<0$ ．．．．．．．（3）かつ $2 \cos \theta-1>0$ …．．．（4）
$0 \leqq \theta<2 \pi$ であるから
［1］①を解くと $0<\theta<\pi$
（2）を解くと $\quad \frac{\pi}{3}<\theta<\frac{5}{3} \pi$
解の共通範囲をとって $\quad \frac{\pi}{3}<\theta<\pi \quad$ …．．．（5）
［2］（3）を解くと $\pi<\theta<2 \pi$
（4）を解くと $0 \leqq \theta<\frac{\pi}{3}, \frac{5}{3} \pi<\theta<2 \pi$
解の共通範囲をとって $\quad \frac{5}{3} \pi<\theta<2 \pi \quad \cdots \cdots(6$
求める解は，（5），（6）の範囲を合わせて $\quad \frac{\pi}{3}<\theta<\pi, \frac{5}{3} \pi<\theta<2 \pi$
（5）不等式を変形すると $\quad\left(1-2 \sin ^{2} \theta\right)+9 \sin \theta+4<0$
整理すると $\quad 2 \sin ^{2} \theta-9 \sin \theta-5>0$
すなわち $\quad(\sin \theta-5)(2 \sin \theta+1)>0$
$\sin \theta-5<0$ であるから $\quad 2 \sin \theta+1<0$
よって $\quad \sin \theta<-\frac{1}{2}$
$0 \leqq \theta<2 \pi$ であるから $\quad \frac{7}{6} \pi<\theta<\frac{11}{6} \pi$
（6）不等式を変形すると $1-2 \sin ^{2} \theta>\sin \theta$
整理すると $\quad 2 \sin ^{2} \theta+\sin \theta-1<0$
すなわち $\quad(\sin \theta+1)(2 \sin \theta-1)<0$
よって $\quad-1<\sin \theta<\frac{1}{2}$
$0 \leqq \theta<2 \pi$ であるから $\quad 0 \leqq \theta<\frac{\pi}{6}, \frac{5}{6} \pi<\theta<\frac{3}{2} \pi, \frac{3}{2} \pi<\theta<2 \pi$

2．［クリアー数学II問題306］
$0 \leqq x<2 \pi$ のとき，関数 $y=\cos 2 x-2 \sin x-1$ の最大值と最小值を求めよ。また，その ときの x の値を求めよ。
$\cos 2 x-2 \sin x-1=\left(1-2 \sin ^{2} x\right)-2 \sin x-1=-2 \sin ^{2} x-2 \sin x$
であるから $\quad y=-2 \sin ^{2} x-2 \sin x$
$\sin x=t$ とおくと， $0 \leqq x<2 \pi$ であるから $\quad-1 \leqq t \leqq 1 \quad$ ．．．．．．（1）
y をtで表すと $\quad y=-2 t^{2}-2 t$
すなわち $\quad y=-2\left(t+\frac{1}{2}\right)^{2}+\frac{1}{2}$
（1）の範囲において，y は
$t=-\frac{1}{2}$ で最大値 $\frac{1}{2}$ ，
$t=1$ で最小値 -4
をとる。
また， $0 \leqq x<2 \pi$ であるから，

$$
\begin{array}{ll}
t=-\frac{1}{2} \text { のとき } & x=\frac{7}{6} \pi, \frac{11}{6} \pi \\
t=1 \text { のとき } & x=\frac{\pi}{2}
\end{array}
$$

よって $x=\frac{7}{6} \pi, \frac{11}{6} \pi$ で最大値 $\frac{1}{2}, x=\frac{\pi}{2}$ で最小値 -4

3．［クリアー数学II問題311］

（1）$\sqrt{3} \sin x-\cos x=1$
2） $\sin x+\sqrt{3} \cos x=\sqrt{2}$
（3） $\sin x \geqq \sqrt{3} \cos x$
4）$\sqrt{2}(\sin x+\cos x)>1$

【コメント】
解答には入れていませんが，単位円を描いて考えましょう
（1）左辺の三角関数を合成すると $2 \sin \left(x-\frac{\pi}{6}\right)=1$

$$
\text { よって } \quad \sin \left(x-\frac{\pi}{6}\right)=\frac{1}{2} \quad \cdots \cdots \text { (1) }
$$

$0 \leqq x<2 \pi$ のとき，$-\frac{\pi}{6} \leqq x-\frac{\pi}{6}<\frac{11}{6} \pi$ であるから，この範囲で（1）を解くと

$$
\begin{aligned}
& x-\frac{\pi}{6}=\frac{\pi}{6} \text { または } x-\frac{\pi}{6}=\frac{5}{6} \pi \\
& \text { よって } \quad x=\frac{\pi}{3}, \pi
\end{aligned}
$$

（2）左辺の三角関数を合成すると $\quad 2 \sin \left(x+\frac{\pi}{3}\right)=\sqrt{2}$

$$
\text { よって } \quad \sin \left(x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}} \quad \cdots \cdots \text { (1) }
$$

$0 \leqq x<2 \pi$ のとき，$\frac{\pi}{3} \leqq x+\frac{\pi}{3}<\frac{7}{3} \pi$ であるから，この範囲で（1）を解くと

$$
x+\frac{\pi}{3}=\frac{3}{4} \pi \quad \text { または } \quad x+\frac{\pi}{3}=\frac{9}{4} \pi
$$

よって $\quad x=\frac{5}{12} \pi, \frac{23}{12} \pi$
（3） $\sin x \geqq \sqrt{3} \cos x$ から $\quad \sin x-\sqrt{3} \cos x \geqq 0$
左辺の三角関数を合成すると $\quad 2 \sin \left(x-\frac{\pi}{3}\right) \geqq 0$
よって $\quad \sin \left(x-\frac{\pi}{3}\right) \geqq 0 \quad$ ．．．．．．（1）
$0 \leqq x<2 \pi$ のとき，$-\frac{\pi}{3} \leqq x-\frac{\pi}{3}<\frac{5}{3} \pi$ であるから，この範囲で（1）を解くと

$$
0 \leqq x-\frac{\pi}{3} \leqq \pi
$$

よって $\quad \frac{\pi}{3} \leqq x \leqq \frac{4}{3} \pi$
（4）左辺の三角関数を合成すると $2 \sin \left(x+\frac{\pi}{4}\right)>1$
よって $\quad \sin \left(x+\frac{\pi}{4}\right)>\frac{1}{2} \quad \cdots \cdots$（1）
$0 \leqq x<2 \pi$ のとき，$\frac{\pi}{4} \leqq x+\frac{\pi}{4}<\frac{9}{4} \pi$ であるから，この範囲で（1）を解くと $\frac{\pi}{4} \leqq x+\frac{\pi}{4}<\frac{5}{6} \pi, \frac{13}{6} \pi<x+\frac{\pi}{4}<\frac{9}{4} \pi$
よって $0 \leqq x<\frac{7}{12} \pi, \frac{23}{12} \pi<x<2 \pi$

4．［クリアー数学II問題312］
次の関数の最大値と最小値，およびそのときの x の値を求めよ。
（1）$y=-\sin x+\cos x \quad(0 \leqq x<2 \pi)$
（2）$y=\sqrt{6} \sin x-\sqrt{2} \cos x \quad(0 \leqq x<2 \pi$
（3）$y=\sin x+\sqrt{3} \cos x \quad(0 \leqq x \leqq \pi)$

【コメント】
解答には入れていませんが，単位円を描いて考えましょう
（1）$-\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{3}{4} \pi\right)$
よって $\quad y=\sqrt{2} \sin \left(x+\frac{3}{4} \pi\right)$
$0 \leqq x<2 \pi$ のとき，$\frac{3}{4} \pi \leqq x+\frac{3}{4} \pi<\frac{11}{4} \pi$ であるから $\quad-1 \leqq \sin \left(x+\frac{3}{4} \pi\right) \leqq 1$
$\sin \left(x+\frac{3}{4} \pi\right)=1$ のとき，$x+\frac{3}{4} \pi=\frac{5}{2} \pi \quad \therefore x=\frac{7}{4} \pi$
$\sin \left(x+\frac{3}{4} \pi\right)=-1$ のとき，$x+\frac{3}{4} \pi=\frac{3}{2} \pi \quad \therefore \quad x=\frac{3}{4} \pi$
よって，この関数は $x=\frac{7}{4} \pi$ で最大值 $\sqrt{2}$ をとり，$x=\frac{3}{4} \pi$ で最小値 $-\sqrt{2}$ をとる。
（2）$\sqrt{6} \sin x-\sqrt{2} \cos x=2 \sqrt{2} \sin \left(x-\frac{\pi}{6}\right)$
よって $\quad y=2 \sqrt{2} \sin \left(x-\frac{\pi}{6}\right)$
$0 \leqq x<2 \pi$ のとき，$-\frac{\pi}{6} \leqq x-\frac{\pi}{6}<\frac{11}{6} \pi$ であるから $\quad-1 \leqq \sin \left(x-\frac{\pi}{6}\right) \leqq 1$
$\sin \left(x-\frac{\pi}{6}\right)=1$ のとき，$x-\frac{\pi}{6}=\frac{\pi}{2} \quad \therefore x=\frac{2}{3} \pi$
$\sin \left(x-\frac{\pi}{6}\right)=-1$ のとき，$x-\frac{\pi}{6}=\frac{3}{2} \pi \quad \therefore x=\frac{5}{3} \pi$
よって，この関数は $x=\frac{2}{3} \pi$ で最大値 $2 \sqrt{2}$ をとり，$x=\frac{5}{3} \pi$ で最小値 $-2 \sqrt{2}$ をとる。
（3） $\sin x+\sqrt{3} \cos x=2 \sin \left(x+\frac{\pi}{3}\right)$
よって $\quad y=2 \sin \left(x+\frac{\pi}{3}\right)$
$0 \leqq x \leqq \pi$ のとき $\frac{\pi}{3} \leqq x+\frac{\pi}{3} \leqq \frac{4}{3} \pi$ であるから $\quad-\frac{\sqrt{3}}{2} \leqq \sin \left(x+\frac{\pi}{3}\right) \leqq 1$
$\sin \left(x+\frac{\pi}{3}\right)=1$ のとき，$x+\frac{\pi}{3}=\frac{\pi}{2} \quad \therefore x=\frac{\pi}{6}$
$\sin \left(x+\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$ のとき，$x+\frac{\pi}{3}=\frac{4}{3} \pi \quad \therefore x=\pi$
よって，この関数は $x=\frac{\pi}{6}$ で最大値 2 をとり，$x=\pi$ で最小値 $-\sqrt{3}$ をとる。

