極限 演習プリント No． 3

1．［クリアー数学III 問題96］
次の等式が成り立つように，定数 a, b の値を定めよ。
（1） $\lim _{x \rightarrow 1} \frac{x^{2}+a x+b}{x-1}=3$
（2） $\lim _{x \rightarrow 2} \frac{a \sqrt{x+3}-b}{x-2}=1$
（1） $\lim _{x \rightarrow 1} \frac{x^{2}+a x+b}{x-1}=3$ ……（1）かか成り立つとする。
$\lim _{x \rightarrow 1}(x-1)=0$ であるから $\quad \lim _{x \rightarrow 1}\left(x^{2}+a x+b\right)=0$ よって， $1+a+b=0$ となり $b=-(a+1)$ ．．．．．．．（2）
このとき $\lim _{x \rightarrow 1} \frac{x^{2}+a x+b}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}+a x-(a+1)}{x-1}$ $=\lim _{x \rightarrow 1} \frac{(x-1)(x+a+1)}{x-1}$ $=\lim _{x \rightarrow 1}(x+a+1)=a+2$
$a+2=3$ のとき（1）が成り立つから $\quad a=1$
このとき（2）から $\quad b=-2$
したがって $\quad a=1, b=-2$
（2） $\lim _{x \rightarrow 2} \frac{a \sqrt{x+3}-b}{x-2}=1$ ……（1）が成り立つとする。 $\lim _{x \rightarrow 2}(x-2)=0$ であるから $\quad \lim _{x \rightarrow 2}(a \sqrt{x+3}-b)=0$ よって，$\sqrt{5} a-b=0$ となり $\quad b=\sqrt{5} a \quad$ …．．．（2） このとき $\lim _{x \rightarrow 2} \frac{a \sqrt{x+3}-b}{x-2}=\lim _{x \rightarrow 2} \frac{a(\sqrt{x+3}-\sqrt{5})}{x-2}$ $=\lim _{x \rightarrow 2} \frac{a\{(x+3)-5\}}{(x-2)(\sqrt{x+3}+\sqrt{5})}$
$=\lim _{x \rightarrow 2} \frac{a}{\sqrt{x+3}+\sqrt{5}}=\frac{a}{2 \sqrt{5}}$
$\frac{a}{2 \sqrt{5}}=1$ のとき（1）が成り立つから $\quad a=2 \sqrt{5}$
このとき（2）から $\quad b=10$
したがって $\quad a=2 \sqrt{5}, b=10$

2．［クリアー数学III 問題103］

次の枢限を求めよ。
（1） $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
（2） $\lim _{x \rightarrow-\infty} \frac{\sin x}{x}$
（3） $\lim _{x \rightarrow \infty} \frac{1-\cos x}{x^{3}}$
（1） $0 \leqq\left|\sin \frac{1}{x}\right| \leqq 1$ であるから

$$
0 \leqq\left|x^{2} \sin \frac{1}{x}\right|=\left|x^{2}\right|\left|\sin \frac{1}{x}\right| \leqq x^{2}
$$

ここで， $\lim _{x \rightarrow 0} x^{2}=0$ であるから $\quad \lim _{x \rightarrow 0}\left|x^{2} \sin \frac{1}{x}\right|=0$
よって $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$
（2） $0 \leqq|\sin x| \leqq 1$ であるから，$x \neq 0$ のとき
$0 \leqq\left|\frac{\sin x}{x}\right|=\frac{|\sin x|}{|x|} \leqq \frac{1}{|x|}$
ここで， $\lim _{x \rightarrow-\infty} \frac{1}{|x|}=0$ であるから $\quad \lim _{x \rightarrow-\infty}\left|\frac{\sin x}{x}\right|=0$
よって $\lim _{x \rightarrow-\infty} \frac{\sin x}{x}=0$
（3）$-1 \leqq \cos x \leqq 1$ であるから $\quad 0 \leqq 1-\cos x \leqq 2$
よって，$x>0$ のとき
$0 \leqq \frac{1-\cos x}{x^{3}} \leqq \frac{2}{x^{3}}$
$\lim _{x \rightarrow \infty} \frac{2}{x^{3}}=0$ であるから
$\lim _{x \rightarrow \infty} \frac{1-\cos x}{x^{3}}=0$

3．［クリアー数学III 問題104］

次の極限を求めよ。
（1） $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2} \cos x}$
（2） $\lim _{x \rightarrow 0} \frac{2 x \sin x}{1-\cos x}$
（3） $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$
（1） $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2} \cos x}=\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x^{2} \cos x(1+\cos x)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2} \cos x(1+\cos x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2} \cos x(1+\cos x)} \\
& =\lim _{x \rightarrow 0}\left\{\left(\frac{\sin x}{x}\right)^{2} \cdot \frac{1}{\cos x(1+\cos x)}\right\} \\
& =1^{2} \cdot \frac{1}{1(1+1)}=\frac{1}{2}
\end{aligned}
$$

（2） $\lim _{x \rightarrow 0} \frac{2 x \sin x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{2 x \sin x(1+\cos x)}{(1-\cos x)(1+\cos x)}$

$$
\begin{aligned}
&=\lim _{x \rightarrow 0} \frac{2 x \sin x(1+\cos x)}{1-\cos ^{2} x}=\lim _{x \rightarrow 0} \frac{2 x \sin x(1+\cos x)}{\sin ^{2} x} \\
&=\lim _{x \rightarrow 0}\left\{\frac{x}{\sin x} \cdot 2(1+\cos x)\right\}=1 \cdot 2(1+1)=4 \\
& \text { (3) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{(1-\cos 3 x)(1+\cos 3 x)}{x^{2}(1+\cos 3 x)} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} 3 x}{x^{2}(1+\cos 3 x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}(1+\cos 3 x)} \\
& =\lim _{x \rightarrow 0}\left\{\left(\frac{\sin 3 x}{3 x}\right)^{2} \cdot \frac{9}{1+\cos 3 x}\right\}=1^{2} \cdot \frac{9}{1+1}=\frac{9}{2}
\end{aligned}
\end{aligned}
$$

4．［クリアー数学III 問題106］
等式 $\lim _{x \rightarrow \frac{\pi}{2}} \frac{a x+b}{\cos x}=\frac{1}{2}$ が成り立つように，定数 a, b の値を定めよ。
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{a x+b}{\cos x}=\frac{1}{2}$
．．．．．．（1）が成り立つとする。
$\lim _{x \rightarrow \frac{\pi}{2}} \cos x=0$ であるから $\quad \lim _{x \rightarrow \frac{\pi}{2}}(a x+b)=0$
よって，$\frac{\pi}{2} a+b=0$ となり $\quad b=-\frac{\pi}{2} a \quad \cdots \cdots .$. （2）
このとき $\quad \lim _{x \rightarrow \frac{\pi}{2}} \frac{a x+b}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{a\left(x-\frac{\pi}{2}\right)}{\cos x}$
$x-\frac{\pi}{2}=\theta$ とおくと，$x \rightarrow \frac{\pi}{2}$ のとき $\theta \rightarrow 0$ であるから

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}} \frac{a x+b}{\cos x} & =\lim _{\theta \rightarrow 0} \frac{a \theta}{\cos \left(\theta+\frac{\pi}{2}\right)}=\lim _{\theta \rightarrow 0} \frac{a \theta}{-\sin \theta} \\
& =\lim _{\theta \rightarrow 0}\left\{(-a) \cdot \frac{\theta}{\sin \theta}\right\}=(-a) \cdot 1=-a
\end{aligned}
$$

$-a=\frac{1}{2}$ のとき（1）が成り立つから $\quad a=-\frac{1}{2}$
このとき（2）から $\quad b=\frac{\pi}{4}$
したがって
$a=-\frac{1}{2}, \quad b=\frac{\pi}{4}$

5．［クリアー数学III 問題108
半径 a の円 O の周上に動点 P と定点 A がある。 A にお ける接線上に $\mathrm{AQ}=\mathrm{AP}$ であるような点 Q を直線 OA に関して P と同じ側にとる。PがAに限りなく近づくとき， $\frac{\mathrm{PQ}}{\widetilde{\mathrm{AP}}^{2}}$ の極限を求めよ。

$\angle \mathrm{AOP}=\theta(0<\theta<\pi)$ とおくと $\widehat{\mathrm{AP}}=a \theta$
$\triangle \mathrm{OAP}$ に着目すると $\mathrm{AP}=2 a \sin \frac{\theta}{2}$
また，接線と弦の作る角の性質から

$$
\angle \mathrm{PAQ}=(\widehat{\mathrm{AP}} \text { の円周角 })=\frac{\theta}{2}
$$

$\triangle \mathrm{APQ}$ は二等辺三角形であるから

$$
\mathrm{PQ}=2 \mathrm{APsin} \frac{\theta}{4}=4 a \sin \frac{\theta}{2} \sin \frac{\theta}{4}
$$

P が A に限りなく近づくとき，$\theta \rightarrow+0$ であるから，求める極限は

$$
\begin{aligned}
\lim _{\theta \rightarrow+0} \frac{\mathrm{PQ}}{\mathrm{AP}^{2}} & =\lim _{\theta \rightarrow+0} \frac{4 a \sin \frac{\theta}{2} \sin \frac{\theta}{4}}{(a \theta)^{2}} \\
& =\lim _{\theta \rightarrow+0}\left(\frac{4}{a} \cdot \frac{1}{8} \cdot \frac{\sin \frac{\theta}{2}}{\frac{\theta}{2}} \cdot \frac{\sin \frac{\theta}{4}}{\frac{\theta}{4}}\right) \\
& =\frac{1}{2 a} \cdot 1 \cdot 1=\frac{1}{2 a}
\end{aligned}
$$

6．［クリアー数学II 問題109］
曲線 $y=\cos 2 x\left(-\frac{\pi}{4} \leqq x \leqq \frac{\pi}{4}\right)$ 上の動点 P と $\mathrm{A}(0,1)$ を通り y 軸上に中心をもつ円の半径を r とする。 P が A に限りなく近づくとき，r はどんな值に近づくか。
$\mathrm{P}(x, \cos 2 x)$ とおく。
曲線 $y=\cos 2 x$ は y 軸に関して対称であるから，
$0<x \leqq \frac{\pi}{4}$ の場合を考えれば十分である。
2 点 A，Pを通り y 軸上に中心をもつ半径 r の円 の中心の座標は $(0,1-r)$
よって，その方程式は
$x^{2}+\{y-(1-r)\}^{2}=r^{2}$

点 P がこの円上にあるから

整理すると $\quad 2(1-\cos 2 x) r=x^{2}+(1-\cos 2 x)^{2}$
$0<x \leqq \frac{\pi}{4}$ のとき， $1-\cos 2 x \neq 0$ であるから

$$
\begin{aligned}
r & =\frac{x^{2}+(1-\cos 2 x)^{2}}{2(1-\cos 2 x)}=\frac{x^{2}}{2(1-\cos 2 x)}+\frac{1-\cos 2 x}{2} \\
& =\frac{x^{2}}{2 \cdot 2 \sin ^{2} x}+\frac{1-\cos 2 x}{2}=\frac{1}{4}\left(\frac{x}{\sin x}\right)^{2}+\frac{1-\cos 2 x}{2}
\end{aligned}
$$

P が A に限りなく近づくとき，$x \rightarrow+0$ であり
$\lim _{x \rightarrow+0} r=\lim _{x \rightarrow+0}\left\{\frac{1}{4}\left(\frac{x}{\sin x}\right)^{2}+\frac{1-\cos 2 x}{2}\right\}=\frac{1}{4} \cdot 1^{2}+\frac{1-1}{2}=\frac{1}{4}$
したがって，r は $\frac{1}{4}$ に近づく。

