積分法 演習プリント No． 1 解答

1．［クリアー数学III 問題254］

Cは積分定数とする。
（1） $\int \frac{\left(\sqrt[4]{x^{3}}-1\right)^{2}}{x} d x=\int \frac{\left(x^{\frac{3}{4}}-1\right)^{2}}{x} d x=\int \frac{x^{\frac{3}{2}}-2 x^{\frac{3}{4}}+1}{x} d x$

$$
\begin{aligned}
& =\int\left(x^{\frac{1}{2}}-2 x^{-\frac{1}{x}}+\frac{1}{x}\right) d x \\
& =\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-2 \cdot \frac{x^{-\frac{1}{4}+1}}{-\frac{1}{4}+1}+\log |x|+C \\
& =\frac{2}{3} x \sqrt{x}-\frac{8}{3} \sqrt[4]{x^{3}}+\log x+C
\end{aligned}
$$

（2） $\int\left(2-\tan ^{2} x\right) d x=\int\left\{2-\left(\frac{1}{\cos ^{2} x}-1\right)\right\} d x$
$=\int\left(3-\frac{1}{\cos ^{2} x}\right) d x=3 x-\tan x+C$
（3） $\int\left(7^{x}-3 e^{x}\right) d x=\frac{7^{x}}{\log 7}-3 e^{x}+C$

2．［クリアー数学III 問題272］

Cは積分定数とする。
（1） $\int \frac{d x}{x(x+3)}=\frac{1}{3} \int\left(\frac{1}{x}-\frac{1}{x+3}\right) d x=\frac{1}{3}(\log |x|-\log |x+3|)+C=\frac{1}{3} \log \left|\frac{x}{x+3}\right|+C$
（2） $\int \frac{d x}{x^{2}-9}=\int \frac{d x}{(x+3)(x-3)}=\frac{1}{6} \int\left(\frac{1}{x-3}-\frac{1}{x+3}\right) d x$
$=\frac{1}{6}(\log |x-3|-\log |x+3|)+C=\frac{1}{6} \log \left|\frac{x-3}{x+3}\right|+C$
（3） $\int \frac{2 x+1}{(x-2)(x+3)} d x=\int\left(\frac{1}{x-2}+\frac{1}{x+3}\right) d x$
$=\log |x-2|+\log |x+3|+C=\log |(x-2)(x+3)|+C$

3．［クリアー数学III 問題259］

C は積分定数とする。
（1） $4-3 x^{2}=u$ とおくと $\quad-6 x d x=d u$

$$
\int \frac{x}{\sqrt{4-3 x^{2}}} d x=-\frac{1}{6} \int \frac{-6 x}{\sqrt{4-3 x^{2}}} d x
$$

$$
=-\frac{1}{6} \int \frac{d u}{\sqrt{u}}=-\frac{1}{6} \int u^{-\frac{1}{2}} d u
$$

$$
=-\frac{1}{6} \cdot 2 u^{\frac{1}{2}}+C=-\frac{\sqrt{4-3 x^{2}}}{3}+C
$$

（2） $\cos x=u$ とおくと $\quad-\sin x d x=d u$
$\int \cos ^{4} x \sin x d x=-\int \cos ^{4} x(-\sin x) d x$

$$
=-\int u^{4} d u=-\frac{u^{5}}{5}+C=-\frac{\cos ^{5} x}{5}+C
$$

（3） $\log x=u$ とおくと $\frac{1}{x} d x=d u$
$\int \frac{d x}{x \log x}=\int \frac{d u}{u}=\log |u|+C=\log |\log x|+C$

4．［クリアー数学III問題262］
C は積分定数とする。
（1） $\int x^{2} e^{-x^{3}} d x=-\frac{1}{3} \int e^{-x^{3}} \cdot\left(-x^{3}\right)^{\prime} d x=-\frac{e^{-x^{3}}}{3}+C$
（2） $\int \frac{\cos x}{1-\sin x} d x=-\int \frac{(1-\sin x)^{\prime}}{1-\sin x} d x$

$$
=-\log |1-\sin x|+C
$$

$$
=-\log (1-\sin x)+C
$$

妵意 $-1 \leqq \sin x \leqq 1$ であるから $\quad 1-\sin x \geqq 0$
また，分母 $\ddagger 0$ であるから $\quad 1-\sin x \neq 0$
したがって $1-\sin x>0$
（3） $\int x e^{-2 x} d x=\int x\left(-\frac{1}{2} e^{-2 x}\right)^{\prime} d x=-\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x$

$$
=-\frac{x}{2} e^{-2 x}-\frac{1}{4} e^{-2 x}+C=-\frac{2 x+1}{4} e^{-2 x}+C
$$

5．［クリアー数学III 問題273］

C は積分定数とする。
（1） $\int \cos ^{2} 4 x d x=\int \frac{1+\cos 8 x}{2} d x$

$$
\begin{aligned}
& =\frac{1}{2}\left(x+\frac{\sin 8 x}{8}\right)+C \\
& =\frac{x}{2}+\frac{\sin 8 x}{16}+C
\end{aligned}
$$

（2） $\int \sin ^{2} \frac{x}{4} d x=\int \frac{1-\cos \frac{x}{2}}{2} d x=\frac{1}{2}\left(x-2 \sin \frac{x}{2}\right)+C=\frac{x}{2}-\sin \frac{x}{2}+C$
（3） $\int \sin ^{2} x \cos 2 x d x=\int \frac{1-\cos 2 x}{2} \cdot \cos 2 x d x$

$$
\begin{aligned}
& =\frac{1}{2} \int\left(\cos 2 x-\cos ^{2} 2 x\right) d x \\
& =\frac{1}{2} \int\left(\cos 2 x-\frac{1+\cos 4 x}{2}\right) d x \\
& =\frac{1}{2}\left(\frac{\sin 2 x}{2}-\frac{x}{2}-\frac{1}{2} \cdot \frac{\sin 4 x}{4}\right)+C \\
& =-\frac{x}{4}+\frac{\sin 2 x}{4}-\frac{\sin 4 x}{16}+C
\end{aligned}
$$

（4） $\int \sin x \cos 3 x d x=\frac{1}{2} \int\{\sin 4 x+\sin (-2 x)\} d x$

$$
\begin{aligned}
& =\frac{1}{2} \int(\sin 4 x-\sin 2 x) d x \\
& =\frac{1}{2}\left(-\frac{\cos 4 x}{4}+\frac{\cos 2 x}{2}\right)+C \\
& =-\frac{\cos 4 x}{8}+\frac{\cos 2 x}{4}+C
\end{aligned}
$$

（5） $\int \sin 2 x \sin 4 x d x=-\frac{1}{2} \int(\cos 6 x-\cos 2 x) d x$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\frac{\sin 6 x}{6}-\frac{\sin 2 x}{2}\right)+C \\
& =-\frac{\sin 6 x}{12}+\frac{\sin 2 x}{4}+C
\end{aligned}
$$

6．［クリアー数学III問題279］
C は積分定数とする。
（1） $\int e^{x} \sin x d x=\int\left(e^{x}\right)^{\prime} \sin x d x$

$$
\begin{aligned}
& =e^{x} \sin x-\int e^{x} \cos x d x=e^{x} \sin x-\int\left(e^{x}\right)^{\prime} \cos x d x \\
& =e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x
\end{aligned}
$$

$\int e^{x} \sin x d x$ について整理すると

$$
\int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x)+C
$$

（2） $\int e^{x} \cos 2 x d x=\int\left(e^{x}\right)^{\prime} \cos 2 x d x$
$=e^{x} \cos 2 x+2 \int e^{x} \sin 2 x d x$
$=e^{x} \cos 2 x+2 \int\left(e^{x}\right)^{\prime} \sin 2 x d x$
$=e^{x} \cos 2 x+2 e^{x} \sin 2 x-4 \int e^{x} \cos 2 x d x$
$\int e^{x} \cos 2 x d x$ について整理すると
$\int e^{x} \cos 2 x d x=\frac{1}{5} e^{x}(\cos 2 x+2 \sin 2 x)+C$

