1．［クリアー数学III 問題67］

次の無限級数の収束，発散を調べ，収束するときはその和を求めよ。
（1）$\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\frac{1}{9 \cdot 13}+\cdots \cdots+\frac{1}{(4 n-3)(4 n+1)}+\cdots \cdots$
（2）$\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\cdots \cdots+\frac{1}{\sqrt{n}+\sqrt{n+2}}+\cdots$
（3）$\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{8}-\frac{1}{27}\right)+\cdots \cdots+\left(\frac{1}{2^{n}}-\frac{1}{3^{n}}\right)+\cdots \cdots$
（4）$\frac{1}{4}+\frac{3}{8}+\frac{5}{12}+\cdots \cdots+\frac{2 n-1}{4 n}+\cdots \cdots$
（1）第 n 項までの部分和を S_{n} とする。

$$
\frac{1}{(4 n-3)(4 n+1)}=\frac{1}{4}\left(\frac{1}{4 n-3}-\frac{1}{4 n+1}\right)
$$

であるから

$$
\begin{aligned}
S_{n} & =\frac{1}{4}\left\{\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\cdots \cdots+\left(\frac{1}{4 n-3}-\frac{1}{4 n+1}\right)\right\} \\
& =\frac{1}{4}\left(1-\frac{1}{4 n+1}\right)
\end{aligned}
$$

ゆえに $\quad \lim _{n \rightarrow \infty} S_{n}=\frac{1}{4}$
よって，この無限級数は収束し，その和は $\frac{1}{4}$
（2）第 n 項を a_{n} とすると

$$
\begin{aligned}
a_{n} & =\frac{1}{\sqrt{n}+\sqrt{n+2}}=\frac{\sqrt{n+2}-\sqrt{n}}{(\sqrt{n+2}+\sqrt{n})(\sqrt{n+2}-\sqrt{n})} \\
& =\frac{\sqrt{n+2}-\sqrt{n}}{(n+2)-n}=\frac{1}{2}(\sqrt{n+2}-\sqrt{n})
\end{aligned}
$$

第 n 項までの部分和を S_{n} とすると

$$
\begin{aligned}
S_{n} & =\frac{1}{2}\{(\sqrt{3}-\sqrt{1})+(\sqrt{4}-\sqrt{2})+\cdots \cdots+(\sqrt{n+1}-\sqrt{n-1})+(\sqrt{n+2}-\sqrt{n})\} \\
& =\frac{1}{2}(-1-\sqrt{2}+\sqrt{n+1}+\sqrt{n+2})
\end{aligned}
$$

ゆえに $\lim _{n \rightarrow \infty} S_{n}=\infty$
よって，この無限級数は発散する。
（3）第 n 項までの部分和を S_{n} とすると

$$
\begin{aligned}
S_{n} & =\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \cdots+\frac{1}{2^{n}}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots \cdots \cdot+\frac{1}{3^{n}}\right) \\
& =\frac{\frac{1}{2}\left\{1-\left(\frac{1}{2}\right)^{n}\right\}}{1-\frac{1}{2}}-\frac{\frac{1}{3}\left\{1-\left(\frac{1}{3}\right)^{n}\right\}}{1-\frac{1}{3}} \\
& =1-\left(\frac{1}{2}\right)^{n}-\frac{1}{2}\left\{1-\left(\frac{1}{3}\right)^{n}\right\} \\
& =\frac{1}{2}-\left(\frac{1}{2}\right)^{n}+\frac{1}{2}\left(\frac{1}{3}\right)^{n}
\end{aligned}
$$

ゆえに $\quad \lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}$
よって，この無限級数は収束し，その和は $\frac{1}{2}$
（20）娄 与式 $=\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}}-\frac{1}{3^{n}}\right)$
$\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ は初項 $\frac{1}{2}$ ，公比 $\frac{1}{2}$ の無限等比級数で，
$\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ は初項 $\frac{1}{3}$ ，公比 $\frac{1}{3}$ の無限等比級数である。
公比について，$\left|\frac{1}{2}\right|<1,\left|\frac{1}{3}\right|<1$ であるから，これらの無限等比級数はともに収束 して，その和は

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1, \sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{2}
$$

よって，与えられた無限級数は収束し，その和は

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2^{n}}-\frac{1}{3^{n}}\right)=1-\frac{1}{2}=\frac{1}{2}
$$

（4）第 n 項を a_{n} とすると，$a_{n}=\frac{2 n-1}{4 n}$ であり

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2-\frac{1}{n}}{4}=\frac{1}{2}
$$

よって，数列 $\left\{a_{n}\right\}$ は 0 に収束しないから，この無限級数は発散する。

2．［クリアー数学III問題72］

次のものが収束するような実数 x の值の範囲を求めよ。
（1）無限数列 $\left\{\left(x^{2}-2\right)^{n}\right\}$
（2）無限級数 $\sum_{n=1}^{\infty}\left(x^{2}-2\right)^{n}$
（1）この無限数列の公比は $x^{2}-2$
よって，この無限数列が収束するための必要十分条件は $\quad-1<x^{2}-2 \leqq 1$
$-1<x^{2}-2$ から $\quad x^{2}-1>0$
よって $\quad x<-1,1<x$
$x^{2}-2 \leqq 1$ から $\quad x^{2}-3 \leqq 0$
よって $\quad-\sqrt{3} \leqq x \leqq \sqrt{3} \quad \ldots \ldots$ ．（2）
（1）（2）の共通範囲を求めて $\quad-\sqrt{3} \leqq x<-1,1<x \leqq \sqrt{3}$
（2）この無限級数は初項，公比ともに $x^{2}-2$ の無限等比級数である。
よって，この無限等比級数が収束するための必要十分条件は
$x^{2}-2=0$ …．．．（1）または $\left|x^{2}-2\right|<1$ …．．．（2）
（1）のとき（2）は成り立つから，（2）を満たす実数 x の値の範囲を求めればよい。 （2）から $\quad-1<x^{2}-2<1$
$-1<x^{2}-2$ から $\quad x^{2}-1>0$
よって $\quad x<-1,1<x \quad$.
$x^{2}-2<1$ から $\quad x^{2}-3<0$
よって $\quad-\sqrt{3}<x<\sqrt{3} \quad \ldots \ldots$. （4）
（3）（4）の共通範囲を求めて $\quad-\sqrt{3}<x<-1,1<x<\sqrt{3}$

3．［クリアー数学III問題74］
次の無限級数の和を求めよ。
（1）$\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n} \cos n \pi$
（2）$\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)^{n} \sin \frac{n \pi}{2}$
（1） $\cos \pi=-1, \cos 2 \pi=1, \cos 3 \pi=-1, \cdots \cdots$ であるから $\cos n \pi=(-1)^{n}$
よって $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n} \cos n \pi=\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)^{n}=\frac{-\frac{1}{3}}{1-\left(-\frac{1}{3}\right)}=-\frac{1}{4}$
（2） $\sin \frac{\pi}{2}=1, \sin \pi=0, \sin \frac{3}{2} \pi=-1, \sin 2 \pi=0, \sin \frac{5}{2} \pi=1, \cdots \cdots$
よって，k を自然数とすると，
$n=2 k$ のとき $\quad \sin \frac{n \pi}{2}=\sin k \pi=0$
$n=2 k-1$ のとき $\sin \frac{n \pi}{2}=\sin \frac{(2 k-1) \pi}{2}=(-1)^{k-1}$
よって $\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)^{n} \sin \frac{n \pi}{2}=-\frac{1}{3}+\frac{1}{3^{3}}-\frac{1}{3^{5}}+\frac{1}{3^{7}}-\cdots \cdots$.
$=\sum_{n=1}^{\infty}\left(-\frac{1}{3}\right)\left(-\frac{1}{9}\right)^{n-1}$
$=\frac{-\frac{1}{3}}{1-\left(-\frac{1}{9}\right)}=-\frac{3}{10}$

4．［クリアー数学III 問題79］
$\angle \mathrm{A}_{1}=90^{\circ}, \mathrm{A}_{1} \mathrm{~B}=4, \mathrm{BC}=5, \mathrm{CA}_{1}=3$ の直角三角形 $\mathrm{A}_{1} \mathrm{BC}$ がある。 A_{1} から対辺 BC に下ろした垂線を $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{2}$ から $\mathrm{A}_{1} \mathrm{~B}$ に下ろした垂線を $\mathrm{A}_{2} \mathrm{~A}_{3}$ とし，以下これを無限に続け，点 $\mathrm{A}_{2}, \mathrm{~A}_{3}, \cdots \cdots, \mathrm{~A}_{n}, \cdots \cdots$ をとるとき，$\triangle \mathrm{A}_{1} \mathrm{BA}_{2}$ ， $\triangle \mathrm{A}_{2} \mathrm{BA}_{3}, \triangle \mathrm{~A}_{3} \mathrm{BA}_{4}, \cdots \cdots, \triangle \mathrm{~A}_{n} \mathrm{BA}_{n+1}, \cdots \cdots$ の面積の総和 S を求めよ。

$\triangle \mathrm{A}_{n} \mathrm{BA}_{n+1}$ の面積を S_{n} とする。
$\triangle \mathrm{A}_{n} \mathrm{BA}_{n+1} \propto \triangle \mathrm{~A}_{n+1} \mathrm{BA}_{n+2}$ で，相似比は

$$
\begin{aligned}
& \mathrm{A}_{n} \mathrm{~B}: \mathrm{A}_{n+1} \mathrm{~B}=5: 4 \\
& S_{n}: S_{n+1}=5^{2}: 4^{2}
\end{aligned}
$$

ゆえに

$$
S_{n}: S_{n+1}=5^{2}: 4^{2}
$$

すなわち $\quad S_{n+1}=\frac{16}{25} S_{n}$
また $\quad S_{1}=\frac{16}{25} \triangle \mathrm{~A}_{1} \mathrm{BC}=\frac{16}{25} \cdot \frac{1}{2} \cdot 4 \cdot 3=\frac{96}{25}$
よって，求める面積の総和 S は，初項 $S_{1}=\frac{96}{25}$ ，公比 $\frac{16}{25}\left(\left|\frac{16}{25}\right|<1\right)$ の無限等比級数の
和で表され $\quad S=\frac{\frac{96}{25}}{1-\frac{16}{25}}=\frac{32}{3}$

5．［クリアー数学III問題80］

1 辺が 1 の正三角形 ABC の内接円を O_{1} とし， O_{1} に外接し，辺 AB, AC に接する円を $\mathrm{O}_{2}, \mathrm{O}_{2}$ に外接し，辺 $\mathrm{AB}, ~ \mathrm{AC}$ に接する円を O_{3} とし，以下同様にして，無限 に円 $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \cdots \cdots, \mathrm{O}_{n}, \cdots \cdots$ を作るとき，すべて の円の面積の和を求めよ。ただし，円 O_{n} の半径を r_{n} と するとき，$r_{n}>r_{n+1}$ とする。

円 O_{n} の半径を r_{n} ，面積を S_{n} とし，点 O_{n+1} を通り辺 AB に平行な直線と点 O_{n} から AB に下ろした垂線との交点を H_{n} とする。
$\triangle \mathrm{O}_{n} \mathrm{O}_{n+1} \mathrm{H}_{n}$ において，$\angle \mathrm{O}_{n} \mathrm{O}_{n+1} \mathrm{H}_{n}=30^{\circ}$ である
から $\mathrm{O}_{n} \mathrm{O}_{n+1} \sin 30^{\circ}=\mathrm{O}_{n} \mathrm{H}_{n}$
すなわち $\quad\left(r_{n}+r_{n+1}\right) \cdot \frac{1}{2}=r_{n}-r_{n+1}$
よって $\quad r_{n+1}=\frac{1}{3} r_{n}$
したがって，円 O_{n} と円 O_{n+1} の面積比は $9: 1$ であるから

$$
S_{n+1}=\frac{1}{9} S_{n}
$$

また，$r_{1}=\frac{1}{2} \mathrm{AB} \tan 30^{\circ}=\frac{1}{2 \sqrt{3}}$ であるから

$$
S_{1}=\pi r_{1}^{2}=\frac{\pi}{12}
$$

ゆえに，すべての円の面積の和は，初項 $\frac{\pi}{12}$ ，公比 $\frac{1}{9}\left(\left|\frac{1}{9}\right|<1\right)$ の無限等比級数で表さ
れ，その和は

$$
\sum_{n=1}^{\infty} S_{n}=\frac{\frac{\pi}{12}}{1-\frac{1}{9}}=\frac{3}{32} \pi
$$

