極限 演習プリント No.2 解答

1. 「クリアー数学Ⅲ 問題67]

次の無限級数の収束、発散を調べ、収束するときはその和を求めよ。

$$(1) \quad \frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \frac{1}{9 \cdot 13} + \dots + \frac{1}{(4n-3)(4n+1)} + \dots$$

(2)
$$\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{2}+\sqrt{4}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \dots + \frac{1}{\sqrt{n}+\sqrt{n+2}} + \dots$$

$$(3) \quad \left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{8}-\frac{1}{27}\right)+\cdots\cdots+\left(\frac{1}{2^n}-\frac{1}{3^n}\right)+\cdots\cdots$$

(4)
$$\frac{1}{4} + \frac{3}{8} + \frac{5}{12} + \dots + \frac{2n-1}{4n} + \dots$$

(1) 第n 項までの部分和を S_n とする。

$$\frac{1}{(4n-3)(4n+1)} = \frac{1}{4} \left(\frac{1}{4n-3} - \frac{1}{4n+1} \right)$$

であるから

$$S_n = \frac{1}{4} \left\{ \left(1 - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{9} \right) + \dots + \left(\frac{1}{4n - 3} - \frac{1}{4n + 1} \right) \right\}$$
$$= \frac{1}{4} \left(1 - \frac{1}{4n + 1} \right)$$

ゆえに
$$\lim_{n\to\infty} S_n = \frac{1}{4}$$

よって、この無限級数は収束し、その和は $\frac{1}{4}$

(2) 第n項を a_n とすると

$$\begin{split} a_n &= \frac{1}{\sqrt{n} + \sqrt{n+2}} = \frac{\sqrt{n+2} - \sqrt{n}}{(\sqrt{n+2} + \sqrt{n})(\sqrt{n+2} - \sqrt{n})} \\ &= \frac{\sqrt{n+2} - \sqrt{n}}{(n+2) - n} = \frac{1}{2}(\sqrt{n+2} - \sqrt{n}) \end{split}$$

第n項までの部分和を S_n とすると

$$\begin{split} S_n &= \frac{1}{2} \{ (\sqrt{3} - \sqrt{1}) + (\sqrt{4} - \sqrt{2}) + \dots + (\sqrt{n+1} - \sqrt{n-1}) + (\sqrt{n+2} - \sqrt{n}) \} \\ &= \frac{1}{2} (-1 - \sqrt{2} + \sqrt{n+1} + \sqrt{n+2}) \end{split}$$

ゆえに $\lim_{n\to\infty} S_n = \infty$

よって,この無限級数は発散する。

(3) 第n 項までの部分和を S_n とすると

$$S_n = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}\right) - \left(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^n}\right)$$

$$= \frac{\frac{1}{2}\left\{1 - \left(\frac{1}{2}\right)^n\right\}}{1 - \frac{1}{2}} - \frac{\frac{1}{3}\left\{1 - \left(\frac{1}{3}\right)^n\right\}}{1 - \frac{1}{3}}$$

$$= 1 - \left(\frac{1}{2}\right)^n - \frac{1}{2}\left\{1 - \left(\frac{1}{3}\right)^n\right\}$$

$$= \frac{1}{2} - \left(\frac{1}{2}\right)^n + \frac{1}{2}\left(\frac{1}{3}\right)^n$$

ゆえに
$$\lim_{n\to\infty} S_n = \frac{1}{2}$$

よって、この無限級数は収束し、その和は $\frac{1}{2}$

別解 与式 = $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right)$

 $\sum_{n=1}^{\infty} \frac{1}{2^n}$ は初項 $\frac{1}{2}$, 公比 $\frac{1}{2}$ の無限等比級数で,

 $\sum_{n=1}^{\infty} \frac{1}{3^n}$ は初項 $\frac{1}{3}$,公比 $\frac{1}{3}$ の無限等比級数である。

公比について, $\left|\frac{1}{2}\right|<1$, $\left|\frac{1}{3}\right|<1$ であるから,これらの無限等比級数はともに収束して.その和は

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1, \quad \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$$

よって, 与えられた無限級数は収束し, その和は

$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right) = 1 - \frac{1}{2} = \frac{1}{2}$$

(4) 第 n 項を a_n とすると, $a_n = \frac{2n-1}{4n}$ であり

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2-\frac{1}{n}}{4} = \frac{1}{2}$$

よって、数列 $\{a_n\}$ は0に収束しないから、この無限級数は発散する。

2. 「クリアー数学Ⅲ 問題72]

次のものが収束するような実数 x の値の範囲を求めよ。

(1) 無限数列 $\{(x^2-2)^n\}$

(2) 無限級数 $\sum_{n=1}^{\infty} (x^2-2)^n$

(1) この無限数列の公比は x^2-2

よって,この無限数列が収束するための必要十分条件は $-1 < x^2 - 2 \le 1$ $-1 < x^2 - 2$ から $x^2 - 1 > 0$ よって x < -1, 1 < x …… ①

 $x^2-2 \le 1$ から $x^2-3 \le 0$ よって $-\sqrt{3} \le x \le \sqrt{3}$ ②

①, ② の共通範囲を求めて $-\sqrt{3} \le x < -1$, $1 < x \le \sqrt{3}$

(2) この無限級数は初項、公比ともに x^2-2 の無限等比級数である。

よって, この無限等比級数が収束するための必要十分条件は

$$x^2-2=0$$
 ① または $|x^2-2|<1$ ②

① のとき ② は成り立つから、② を満たす実数 x の値の範囲を求めればよい。

② \hbar ら $-1 < x^2 - 2 < 1$

 $-1 < x^2 - 2$ から $x^2 - 1 > 0$ よって x < -1, 1 < x ……③

よって $-\sqrt{3} < x < \sqrt{3}$ ……④

③, ④ の共通範囲を求めて $-\sqrt{3} < x < -1$, $1 < x < \sqrt{3}$

極限 演習プリント No.2 解答

3. [クリアー数学Ⅲ 問題74]

次の無限級数の和を求めよ。

$$(1) \quad \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n \cos n\pi$$

$$(2) \quad \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n \sin\frac{n\pi}{2}$$

(1) $\cos\pi=-1$, $\cos2\pi=1$, $\cos3\pi=-1$, …… であるから $\cos n\pi=(-1)^n$

よって
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n \cos n\pi = \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n = \frac{-\frac{1}{3}}{1 - \left(-\frac{1}{3}\right)} = -\frac{1}{4}$$

(2) $\sin\frac{\pi}{2}=1$, $\sin\pi=0$, $\sin\frac{3}{2}\pi=-1$, $\sin2\pi=0$, $\sin\frac{5}{2}\pi=1$, …… よって、k を自然数とすると、

$$n=2k$$
 のとき

$$\sin\frac{n\pi}{2} = \sin k\pi = 0$$

よって
$$\sum_{n=1}^{\infty} \left(-\frac{1}{3} \right)^n \sin \frac{n\pi}{2} = -\frac{1}{3} + \frac{1}{3^3} - \frac{1}{3^5} + \frac{1}{3^7} - \dots$$
$$= \sum_{n=1}^{\infty} \left(-\frac{1}{3} \right) \left(-\frac{1}{9} \right)^{n-1}$$
$$= \frac{-\frac{1}{3}}{1 - \left(-\frac{1}{9} \right)} = -\frac{3}{10}$$

4. [クリアー数学Ⅲ 問題79]

 $\angle A_1 = 90^\circ$, $A_1B = 4$, BC = 5, $CA_1 = 3$ の直角三角形 A_1BC がある。 A_1 から対辺 BC に下ろした垂線を A_1A_2 , A_2 から A_1B に下ろした垂線を A_2A_3 とし,以下これを無限に続け,点 A_2 , A_3 , ……, A_n , …… をとるとき, $\triangle A_1BA_2$, $\triangle A_2BA_3$, $\triangle A_3BA_4$, ……, $\triangle A_nBA_{n+1}$, …… の面積の 総和 S を求めよ。

 $\triangle A_*BA_{*+1}$ の面積を S_* とする。

 $\triangle A_n BA_{n+1} \circ \triangle A_{n+1} BA_{n+2}$ で、相似比は

$$A_nB:A_{n+1}B=5:4$$

ゆえに $S_n: S_{n+1} = 5^2: 4^2$

 $tabs S_{n+1} = \frac{16}{25}S_n$

$$S_1 = \frac{16}{25} \triangle A_1 BC = \frac{16}{25} \cdot \frac{1}{2} \cdot 4 \cdot 3 = \frac{96}{25}$$

よって,求める面積の総和Sは,初項 $S_1=\frac{96}{25}$,公比 $\frac{16}{25}\left(\left|\frac{16}{25}\right|<1\right)$ の無限等比級数の

和で表され
$$S = \frac{\frac{96}{25}}{1 - \frac{16}{25}} = \frac{32}{3}$$

5. [クリアー数学Ⅲ 問題80]

1 辺が 1 の正三角形 ABC の内接円を O_1 とし, O_1 に外接し,辺 AB,AC に接する円を O_2 , O_2 に外接し,辺 AB,AC に接する円を O_3 とし,以下同様にして,無限 に円 O_1 , O_2 , O_3 ,……, O_n ,…… を作るとき,すべて の円の面積の和を求めよ。ただし,円 O_n の半径を r_n と するとき, $r_n > r_{n+1}$ とする。

円 O_n の半径を r_n ,面積を S_n とし,点 O_{n+1} を通り 辺 AB に平行な直線と点 O_n から AB に下ろした垂線との交点を H_n とする。

$$\triangle O_n O_{n+1} H_n$$
 において、 $\angle O_n O_{n+1} H_n = 30^\circ$ であるから $O_n O_{n+1} \sin 30^\circ = O_n H_n$

したがって、 \mathcal{H} \mathcal{O}_n と \mathcal{H} \mathcal{O}_{n+1} の面積比は 9:1 であるから

$$S_{n+1} = \frac{1}{9}S_n$$

また, $r_1 = \frac{1}{2} A B \tan 30^\circ = \frac{1}{2\sqrt{3}}$ であるから

$$S_1 = \pi r_1^2 = \frac{\pi}{12}$$

ゆえに,すべての円の面積の和は,初項 $\frac{\pi}{12}$,公比 $\frac{1}{9}\left(\left|\frac{1}{9}\right|<1\right)$ の無限等比級数で表され,その和は

$$\sum_{n=1}^{\infty} S_n = \frac{\frac{\pi}{12}}{1 - \frac{1}{9}} = \frac{3}{32}\pi$$

