1．［クリアー数学III 問題48］
次の極限を求めよ。
（1） $\lim _{n \rightarrow \infty} n^{2}\left(\frac{1}{n+1}-\frac{1}{n}\right)$
（2） $\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}+n+1}{n+1}-3 n\right)$
（3） $\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+2}-n\right)$
（4） $\lim _{n \rightarrow \infty} \sqrt{n+1}(\sqrt{n+2}-\sqrt{n-1})$
（5） $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+2}-\sqrt{n}}$
（6） $\lim _{n \rightarrow \infty} \frac{\sqrt{n+5}-\sqrt{n+2}}{\sqrt{n+3}-\sqrt{n+1}}$
（1） $\lim _{n \rightarrow \infty} n^{2}\left(\frac{1}{n+1}-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{-n^{2}}{n(n+1)}=\lim _{n \rightarrow \infty} \frac{-n}{n+1}=\lim _{n \rightarrow \infty} \frac{-1}{1+\frac{1}{n}}=\frac{-1}{1+0}=-1$
（2） $\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}+n+1}{n+1}-3 n\right)=\lim _{n \rightarrow \infty} \frac{-2 n+1}{n+1}=\lim _{n \rightarrow \infty} \frac{-2+\frac{1}{n}}{1+\frac{1}{n}}=\frac{-2+0}{1+0}=-2$
（3）$\sqrt{n^{2}+2}-n=\frac{\left(\sqrt{n^{2}+2}-n\right)\left(\sqrt{n^{2}+2}+n\right)}{\sqrt{n^{2}+2}+n}=\frac{\left(n^{2}+2\right)-n^{2}}{\sqrt{n^{2}+2}+n}=\frac{2}{\sqrt{n^{2}+2}+n}$ よって $\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+2}-n\right)=\lim _{n \rightarrow \infty} \frac{2 n}{\sqrt{n^{2}+2}+n}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{1+\frac{2}{n^{2}}}+1}=\frac{2}{1+1}=1$
（4）$\sqrt{n+1}(\sqrt{n+2}-\sqrt{n-1})=\frac{\sqrt{n+1}(\sqrt{n+2}-\sqrt{n-1})(\sqrt{n+2}+\sqrt{n-1})}{\sqrt{n+2}+\sqrt{n-1}}$

$$
\begin{aligned}
& =\frac{\sqrt{n+1}\{(n+2)-(n-1)\}}{\sqrt{n+2}+\sqrt{n-1}} \\
& =\frac{3 \sqrt{n+1}}{\sqrt{n+2}+\sqrt{n-1}}
\end{aligned}
$$

よって $\quad \lim _{n \rightarrow \infty} \sqrt{n+1}(\sqrt{n+2}-\sqrt{n-1})=\lim _{n \rightarrow \infty} \frac{3 \sqrt{n+1}}{\sqrt{n+2}+\sqrt{n-1}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{3 \sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}+\sqrt{1-\frac{1}{n}}} \\
& =\frac{3}{1+1}=\frac{3}{2}
\end{aligned}
$$

（5） $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+2}-\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{2}{n^{2}}}-\sqrt{\frac{1}{n}}}=\frac{1}{1-0}=1$
（6）$\frac{\sqrt{n+5}-\sqrt{n+2}}{\sqrt{n+3}-\sqrt{n+1}}=\frac{(\sqrt{n+5}-\sqrt{n+2})(\sqrt{n+5}+\sqrt{n+2})}{(\sqrt{n+3}-\sqrt{n+1})(\sqrt{n+3}+\sqrt{n+1})} \times \frac{\sqrt{n+3}+\sqrt{n+1}}{\sqrt{n+5}+\sqrt{n+2}}$
2．［クリアー数学III問題47］

次の極限を求めよ。

（1） $\lim _{n \rightarrow \infty} \frac{1}{n} \cos \frac{n \pi}{4}$
（2） $\lim _{n \rightarrow \infty} \frac{\sin ^{2} n \theta}{n^{2}+1}$（ θ は定数）
（1）$-1 \leqq \cos \frac{n \pi}{4} \leqq 1$ であるから $\quad-\frac{1}{n} \leqq \frac{1}{n} \cos \frac{n \pi}{4} \leqq \frac{1}{n}$

$$
\text { ここで, } \lim _{n \rightarrow \infty}\left(-\frac{1}{n}\right)=0, \lim _{n \rightarrow \infty} \frac{1}{n}=0 \text { であるから } \quad \lim _{n \rightarrow \infty} \frac{1}{n} \cos \frac{n \pi}{4}=0
$$

（2） $0 \leqq \sin ^{2} n \theta \leqq 1$ であるから $\quad 0 \leqq \frac{\sin ^{2} n \theta}{n^{2}+1} \leqq \frac{1}{n^{2}+1}$
ここで， $\lim _{n \rightarrow \infty} \frac{1}{n^{2}+1}=0$ であるから $\quad \lim _{n \rightarrow \infty} \frac{\sin ^{2} n \theta}{n^{2}+1}=0$

3．［クリアー数学III問題55］
数列 $\left\{\left(\frac{2 x}{x-1}\right)^{n}\right\}$ が収束するような x の値の範囲を求めよ。

与えられた数列が収束するための必要十分条件は $\quad-1<\frac{2 x}{x-1} \leqq 1$
$-1<\frac{2 x}{x-1}$ から $\quad \frac{3 x-1}{x-1}>0$
両辺に $(x-1)^{2}(>0)$ を掛け $\quad(3 x-1)(x-1)>0, x \neq 1$
よって $\quad x<\frac{1}{3}, 1<x \quad$. （1）
$\frac{2 x}{x-1} \leqq 1$ から $\quad \frac{x+1}{x-1} \leqq 0$
両辺に $(x-1)^{2}(>0)$ を掛け $\quad(x+1)(x-1) \leqq 0, x \neq 1$
よって $\quad-1 \leqq x<1 \quad$. （2）
（1）（2）の共通範囲を求めて $\quad-1 \leqq x<\frac{1}{3}$
馿解 与えられた数列が収束するための必要十分条件は $\quad-1<\frac{2 x}{x-1} \leqq 1$
$\frac{2 x}{x-1}=\frac{2(x-1)+2}{x-1}=\frac{2}{x-1}+2$
したがって，$y=\frac{2 x}{x-1}$ のグラフは，右の図のように なる。
よって，$-1<\frac{2 x}{x-1} \leqq 1$ となる x の値の範囲は，グラ
フより $-1 \leqq x<\frac{1}{3}$

4．［クリアー数学III問題56］
r は定数とする。次の数列の極限を調べよ。
（1）$\left\{\frac{1}{1+r^{2 n}}\right\}$
（2）$\left\{\frac{r^{2 n}+r^{n}}{r^{2 n}+2}\right\}$
（1）［1］$|r|<1$ のとき

$$
\lim _{n \rightarrow \infty} 2^{2 n}=0 \text { であるから } \quad \lim _{n \rightarrow \infty} \frac{1}{1+r^{2 n}}=\frac{1}{1+0}=1
$$

［2］$|r|=1$ すなわち $r= \pm 1$ のとき
$r^{2 n}=1$ であるから $\quad \lim _{n \rightarrow \infty} \frac{1}{1+r^{2 n}}=\frac{1}{1+1}=\frac{1}{2}$
［3］$|r|>1$ のとき
$\lim _{n \rightarrow \infty} r^{2 n}=\infty$ であるから $\quad \lim _{n \rightarrow \infty} \frac{1}{1+r^{2 n}}=0$
（2）［1］$|r|<1$ のとき
$\lim _{n \rightarrow \infty} r^{n}=0, \lim _{n \rightarrow \infty} r^{2 n}=0$ であるから $\quad \lim _{n \rightarrow \infty} \frac{r^{2 n}+r^{n}}{r^{2 n}+2}=\frac{0+0}{0+2}=0$
［2］$r=1$ のとき
$r^{n}=1, r^{2 n}=1$ であるから $\quad \lim _{n \rightarrow \infty} \frac{r^{2 n}+r^{n}}{r^{2 n}+2}=\frac{1+1}{1+2}=\frac{2}{3}$
［3］$r=-1$ のとき

$$
\frac{r^{2 n}+r^{n}}{r^{2 n}+2}=\frac{1+(-1)^{n}}{1+2}=\frac{1+(-1)^{n}}{3}
$$

よって，数列 $\left\{\frac{r^{2 n}+r^{n}}{r^{2 n}+2}\right\}$ は振動して，極限はない。
［4］$|r|>1$ のとき
$\left|\frac{1}{r}\right|<1,\left|\frac{1}{r^{2}}\right|<1$ であるから $\quad \lim _{n \rightarrow \infty} \frac{r^{2 n}+r^{n}}{r^{2 n}+2}=\lim _{n \rightarrow \infty} \frac{1+\left(\frac{1}{r}\right)^{n}}{1+2\left(\frac{1}{r^{2}}\right)^{n}}=\frac{1+0}{1+2 \cdot 0}=1$

