微分法 演習プリント No． 3 解答

1．［クリアー数学III 問題184］
曲線 $x y=k(k \neq 0)$ 上の任意の点 P における接線が，x 軸，y 軸と交わる点を，それぞれ
Q, R とするとき，$\triangle \mathrm{OQR}$ の面積は一定であることを示せ。ただし， O は原点とする。
$x y=k$ の両辺を x について微分すると $\quad y+x \frac{d y}{d x}=0$
ゆえに $\frac{d y}{d x}=-\frac{y}{x}$
点 P の座標を $\left(x_{1}, y_{1}\right)$ とすると，点 P における接線の方程式は

$$
y-y_{1}=-\frac{y_{1}}{x_{1}}\left(x-x_{1}\right) \quad \cdots \cdots(1)
$$

（1）に $y=0$ を代入して整理すると $\quad x=2 x_{1}$ よって，点 Q の座標は $\left(2 x_{1}, 0\right)$ （1）に $x=0$ を代入して整理すると $\quad y=2 y_{1}$ よって，点 R の座標は $\left(0,2 y_{1}\right)$
また，点 P は曲線 $x y=k$ 上の点であるから $x_{1} y_{1}=k$
ゆえに $\quad \triangle \mathrm{OQR}=\frac{1}{2}\left|2 x_{1}\right|\left|2 y_{1}\right|=2\left|x_{1} y_{1}\right|=2|k|$

2．［クリアー数学III問題189］
平均値の定理を用いて，次のことを証明せよ
（1） $0<\alpha<\beta<\frac{\pi}{2}$ のとき $\sin \beta-\sin \alpha<\beta-\alpha$
（2）$\frac{1}{e^{2}}<a<b<1$ のとき $a-b<b \log b-a \log a<b-a$
（1）関数 $f(x)=\sin x$ はすべての実数 x について微分可能で

$$
f^{\prime}(x)=\cos x
$$

区間 $[\alpha, \beta]$ において，平均値の定理を用いると

$$
\frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(c), \quad \alpha<c<\beta
$$

すなわち $\frac{\sin \beta-\sin \alpha}{\beta-\alpha}=\cos c, \alpha<c<\beta$
を満たす実数 c が存在する。
$0<\alpha<\beta<\frac{\pi}{2}$ であるから $0<c<\frac{\pi}{2}$
よって $\quad 0<\cos c<1$
ゆえに $\quad \frac{\sin \beta-\sin \alpha}{\beta-\alpha}<1$
すなわち $\quad \sin \beta-\sin \alpha<\beta-\alpha$
（2）関数 $f(x)=x \log x$ は $x>0$ で微分可能で $f^{\prime}(x)=\log x+1$
区間 $[a, b]$ において，平均値の定理を用いると $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c), \quad a<c<b$
すなわち $\quad \frac{b \log b-a \log a}{b-a}=\log c+1, \quad a<c<b$
を満たす実数 c が存在する。
$\frac{1}{e^{2}}<a<b<1$ であるから $\quad \frac{1}{e^{2}}<c<1$
したがって $\log \frac{1}{e^{2}}<\log c<\log 1$
すなわち $\quad-2<\log c<0$
よって $\quad-1<\log c+1<1$
ゆえに $\quad-1<\frac{b \log b-a \log a}{b-a}<1$
すなわち $\quad a-b<b \log b-a \log a<b-a$

3．［クリアー数学III 問題197］
関数 $f(x)=\frac{x+a}{x^{2}-1}$ が極值をもつような定数 a の值の範囲を求めよ
$x^{2}-1 \neq 0$ であるから，定義域は $\quad x \neq \pm 1$

$$
f^{\prime}(x)=\frac{x^{2}-1-(x+a) \cdot 2 x}{\left(x^{2}-1\right)^{2}}=-\frac{x^{2}+2 a x+1}{\left(x^{2}-1\right)^{2}}
$$

$f(x)$ が極値をもつための条件は， 2 次方程式 $x^{2}+2 a x+1=0$ が異なる 2 つの実数解を
ち，その解が 1 または -1 でないことである。
2 次方程式 $x^{2}+2 a x+1=0$ の判別式を D とすると

$$
\frac{D}{4}=a^{2}-1
$$

よって，$f(x)$ が極値をもつための条件は
．．（1）かっ
$1+2 a+1 \neq 0$ \qquad
$1-2 a+1 \neq 0 \quad$ …．．．（3）
（1）から $a<-1,1<a$
このとき，（2），（3）を満たす。
よって，求める a の値の範囲は $a<-1,1<a$

微分法 演習プリント No． 3 解答

4．［クリアー数学III 問題198］
関数 $f(x)=a x+\sin x$ が極值をもつように，定数 a の值の範囲を定めよ。

$f^{\prime}(x)=a+\cos x$

関数 $f(x)$ が極值をもつための必要十分条件は，方程式 $f^{\prime}(x)=0$ が実数解をもち，かつ
その解の前後で $f^{\prime}(x)$ の符号が変わることである
$f^{\prime}(x)=0$ とすると $\quad \cos x=-a \quad$. （1）
$-1 \leqq \cos x \leqq 1$ であるから，（1）の実数解が存在するための条件は $\quad-1 \leqq-a \leqq 1$
すなわち $-1 \leqq a \leqq 1$
［1］$a=-1$ のとき
常に $f^{\prime}(x) \leqq 0$ であるから，極值をもたない。
［2］$a=1$ のとき
常に $f^{\prime}(x) \geqq 0$ であるから，極值をもたない。
［3］$-1<a<1$ のとき
（1）の解が $0<x<\pi$ の範囲にあり，その值の前後で $f^{\prime}(x)$ の符号が変わるから，極值を もつ。
以上から，求める a の値の範囲は $\quad-1<a<1$

5．［クリアー数学III問題199］
関数 $f(x)=\frac{a x^{2}+b x+1}{x^{2}+2}$ が $x=1$ で極小値 -1 をとるとき，定数 a, b の値を求めよ。 また，関数 $f(x)$ の極大値を求めよ。
$f^{\prime}(x)=\frac{(2 a x+b)\left(x^{2}+2\right)-\left(a x^{2}+b x+1\right) \cdot 2 x}{\left(x^{2}+2\right)^{2}}=-\frac{b x^{2}-2(2 a-1) x-2 b}{\left(x^{2}+2\right)^{2}}$
$f(x)$ は $x=1$ で微分可能であるから，$f(x)$ が $x=1$ で極小値 -1 をとるならば

$$
f^{\prime}(1)=0, f(1)=-1
$$

よって $-4 a-b+2=0, \frac{a+b+1}{3}=-1$
すなわち $\quad 4 a+b=2, a+b=-4$
これを解いて $\quad a=2, b=-6$
逆に，$a=2, b=-6$ のとき $\quad f(x)=\frac{2 x^{2}-6 x+1}{x^{2}+2}, f^{\prime}(x)=\frac{6(x+2)(x-1)}{\left(x^{2}+2\right)^{2}}$
$f(x)$ の増減表は次のようになる。

x	\cdots	-2	\cdots	1	\cdots
$f^{\prime}(x)$	+	0	-	0	+
$f(x)$	\nearrow	極大		極小	\nearrow
		$\frac{7}{2}$		-1	

よって，$f(x)$ は $x=1$ で極小値 -1 をとり，条件を満たす。
したがって $a=2, b=-6$
また，$f(x)$ は $x=-2$ で極大値 $\frac{7}{2}$ をとる。

6．［クリアー数学III 問題204］
関数 $f(x)=\frac{a \sin x}{\cos x+2}(0 \leqq x \leqq \pi)$ の最大値が $\sqrt{3}$ であるとき，定数 a の值を求めよ。
$a=0$ のときは $f(x)=0$ となり，最大値が $\sqrt{3}$ となることはない。
よって，$a \neq 0$ である。

$$
\begin{aligned}
f^{\prime}(x) & =a \cdot \frac{\cos x \cdot(\cos x+2)-\sin x \cdot(-\sin x)}{(\cos x+2)^{2}} \\
& =\frac{a\left(\cos ^{2} x+2 \cos x+\sin ^{2} x\right)}{}
\end{aligned}
$$

$$
=\frac{a(2 \cos x+1)}{}
$$

$$
=\frac{a(2 \cos x+1}{(\cos x+2)^{2}}
$$

$f^{\prime}(x)=0$ とすると $\quad \cos x=-\frac{1}{2}$
$0<x<\pi$ の範囲でこれを解くと $\quad x=\frac{2}{3} \pi$
［1］$a>0$ のとき，増減表は次のようになる。

ゆえに，最大值は $\quad f\left(\frac{2}{3} \pi\right)=\frac{\frac{\sqrt{3}}{2} a}{-\frac{1}{2}+2}=\frac{\sqrt{3}}{3} a$
条件から $\quad \frac{\sqrt{3}}{3} a=\sqrt{3}$
したがって $\quad a=3$
これは $a>0$ を満たす
［2］$a<0$ のとき，増減表は次のようになる。

x	0	\cdots	$\frac{2}{3} \pi$	\cdots	π
$f^{\prime}(x)$		-	0	+	
$f(x)$	0	\searrow	極小	\nearrow	0

このとき，最大値は $\quad f(0)=f(\pi)=0$
よって，不適である。
［1］．［2］から $\quad a=3$

