微分法 演習プリント No． 2 解答

1．［クリアー数学III 問題169］
x の関数 y が，t を媒介変数として，次の式で表されるとき，$\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ を t の関数とし て表せ。
（1）$x=\frac{t}{1+t}, \quad y=\frac{t^{2}}{1+t}$
（2）$x=\cos t+t \sin t, y=\sin t-t \cos t$
（1）$\frac{d x}{d t}=\frac{1 \cdot(1+t)-t \cdot 1}{(1+t)^{2}}=\frac{1}{(1+t)^{2}}$ ，
$\frac{d y}{d t}=\frac{2 t(1+t)-t^{2} \cdot 1}{(1+t)^{2}}=\frac{t^{2}+2 t}{(1+t)^{2}}$
ゆえに $\quad \frac{d y}{d x}=\frac{\frac{t^{2}+2 t}{(1+t)^{2}}}{\frac{1}{(1+t)^{2}}}=t^{2}+2 t$
また $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d t}{d x}=\frac{d}{d t}\left(t^{2}+2 t\right) \cdot \frac{1}{\frac{d x}{d t}}$

$$
=(2 t+2) \cdot \frac{1}{\frac{1}{(1+t)^{2}}}=2(t+1)^{3}
$$

（2）$\frac{d x}{d t}=-\sin t+(\sin t+t \cos t)=t \cos t$ ，
$\frac{d y}{d t}=\cos t-(\cos t-t \sin t)=t \sin t$
ゆえに $\quad \frac{d y}{d x}=\frac{t \sin t}{t \cos t}=\tan t$
また $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d t}{d x}=\frac{d}{d t}(\tan t) \cdot \frac{1}{\frac{d x}{d t}}$

$$
=\frac{1}{\cos ^{2} t} \cdot \frac{1}{t \cos t}=\frac{1}{t \cos ^{3} t}
$$

2．［クリアー数学III例題32］

閏数 $y=x^{2 x}(x>0)$ を微分せよ。
$x>0$ であるから $\quad x^{2 x}>0$
$y=x^{2 x}$ について，両辺の自然対数をとると $\log y=2 x \log x$
この両辺を x で微分すると $\quad \frac{y^{\prime}}{y}=2 \cdot \log x+2 x \cdot \frac{1}{x}=2(\log x+1)$
ゆえに $\quad y^{\prime}=2 y(\log x+1)=2 x^{2 x}(\log x+1)$
圏考 このように，両辺の自然対数をとって微分する方法を，対数徴分法という。

3．［クリアー数学III 例題33］

関数 $f(x)=x e^{x}$ について，次のことを数学的帰納法で証明せよ。

$$
f^{(n)}(x)=(x+n) e^{x} \quad \ldots \ldots . \text { (1) }
$$

［1］$n=1$ のとき
左辺 $=f^{\prime}(x)=\left(x e^{x}\right)^{\prime}=1 \cdot e^{x}+x \cdot e^{x}=(x+1) e^{x}, \quad$ 右辺 $=(x+1) e^{x}$
よって，$n=1$ のとき，（1）が成り立つ。
［2］$n=k$ のとき（1）が成り立つ，すなわち $f^{(k)}(x)=(x+k) e^{x}$ が成り立つと仮定すると，
$n=k+1$ のとき
左辺 $=f^{(k+1)}(x)=\frac{d}{d x} f^{(k)}(x)=\frac{d}{d x}\left\{(x+k) e^{x}\right\}=1 \cdot e^{x}+(x+k) \cdot e^{x}$
$=\{x+(k+1)\} e^{x}$
よって，$n=k+1$ のときも（1）が成り立つ。
［1］，［2］から，すべての自然数 n について（1）が成り立つ。

微分法 演習プリント No． 2 解答

4．［クリアー数学III 問題178］
2 つの曲線 $y=-\frac{2}{x}, y=\sqrt{x+a}$ が共有点をもち，その点において共通の接線をもつと
き，定数 a の値を求めよ。
$f(x)=-\frac{2}{x}, g(x)=\sqrt{x+a}$ とすると $\quad f^{\prime}(x)=\frac{2}{x^{2}}, g^{\prime}(x)=\frac{1}{2 \sqrt{x+a}}$ 2 つの曲線 $y=f(x), y=g(x)$ の接点の x 座標を $t(t \neq 0, t+a>0)$ とする。
$x=t$ における 2 曲線の y 座標が等しいから $\quad f(t)=g(t)$
すなわち $\quad-\frac{2}{t}=\sqrt{t+a} \quad \cdots \cdots$（1）
また，$x=t$ における 2 つの曲線の接線の傾きが等しいから $\quad f^{\prime}(t)=g^{\prime}(t)$
すなわち $\quad \frac{2}{t^{2}}=\frac{1}{2 \sqrt{t+a}} \cdots \cdots$ ．（2）
（1），（2）から $\quad \frac{2}{t^{2}}=-\frac{t}{4} \quad$ よって $\quad t^{3}+8=0$
t は実数であるから $\quad t=-2 \quad(t \neq 0$ を満たす）
$=-2$ を（1）に代入すると $\quad \sqrt{a-2}=1$
ゆえに $a-2=1$ よって $a=3$ これは，$t+a>0$ を満たす。
したがって $t=-2, a=3$

5．［クリアー数学III問題180］
$0<x<2 \pi$ とする。 2 つの曲線 $y=2 \cos x, y=a+\sin 2 x$ が接するように，定数 a の値を定めよ。
$f(x)=2 \cos x, g(x)=a+\sin 2 x$ とおくと

$$
f^{\prime}(x)=-2 \sin x, \quad g^{\prime}(x)=2 \cos 2 x
$$

2 曲線 $y=f(x), y=g(x)$ が $x=\alpha(0<\alpha<2 \pi)$ で接するための条件は
$f(\alpha)=g(\alpha) \quad$ かつ $\quad f^{\prime}(\alpha)=g^{\prime}(\alpha)$
すなわち $\quad 2 \cos \alpha=a+\sin 2 \alpha \quad$ …．．．（1）
$-2 \sin \alpha=2 \cos 2 \alpha \quad \cdots \cdots .$. （2）
（2）から $\quad-2 \sin \alpha=2\left(1-2 \sin ^{2} \alpha\right)$
整理して $\quad 2 \sin ^{2} \alpha-\sin \alpha-1=0$
よって $\quad(\sin \alpha-1)(2 \sin \alpha+1)=0$
ゆえに $\quad \sin \alpha=-\frac{1}{2}, 1$
$0<\alpha<2 \pi$ であるから $\quad \alpha=\frac{\pi}{2}, \frac{7}{6} \pi, \frac{11}{6} \pi$
（1）から $\quad a=2 \cos \alpha-\sin 2 \alpha$
$\alpha=\frac{\pi}{2} \quad$ のとき $\quad a=2 \cos \frac{\pi}{2}-\sin \pi=0$
$\alpha=\frac{7}{6} \pi \quad$ のとき $\quad a=2 \cos \frac{7}{6} \pi-\sin \frac{7}{3} \pi=-\frac{3 \sqrt{3}}{2}$
$\alpha=\frac{11}{6} \pi$ のとき $\quad a=2 \cos \frac{11}{6} \pi-\sin \frac{11}{3} \pi=\frac{3 \sqrt{3}}{2}$
したがって，求める a の値は $\quad a=0, \pm \frac{3 \sqrt{3}}{2}$

6．［クリアー数学III問題182］
曲線 $y=x e^{x}$ に点 $\mathrm{P}(a, 0)$ から接線が引けるような定数 a の值の範囲を求めよ。

接点の座標を $\left(t, t e^{t}\right)$ とする。
$y=x e^{x}$ から $\quad y^{\prime}=(x+1) e^{x}$
よって，点 $\left(t, t e^{t}\right)$ における接線の方程式は $\quad y-t e^{t}=(t+1) e^{t}(x-t)$
この直線が点 $\mathrm{P}(a, 0)$ を通るとき $\quad-t e^{t}=(t+1) e^{t}(a-t)$
$e^{t}>0$ であるから $\quad-t=(t+1)(a-t)$
整理して $\quad t^{2}-a t-a=0 \quad$ …．．．（1）
接線が引けるための条件は，t についての 2 次方程式（1）が実数解をもつことである。
（1）の判別式を D とすると $\quad D=(-a)^{2}-4 \cdot 1 \cdot(-a)=a^{2}+4 a$
$D \geqq 0$ より $\quad a^{2}+4 a \geqq 0$
これを解いて $a \leqq-4,0 \leqq a$

