B③ 授業プリント

3. 第14章 5-1 P.318

平行六面体 ABCD – EFGH について、 $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AD} = \overrightarrow{d}$, $\overrightarrow{AE} = \overrightarrow{e}$ とするとき、 次のベクトル \vec{b} , \vec{d} , \vec{e} で表せ。

(1) **FG**

(2) HD

(3) CH

(4) \overrightarrow{AG} (5) \overrightarrow{HB}

(ホペント) 平行四辺形では、っなげる(加法)が有効。 1. 第14章 5-8 P.318

次の2つのベクトル \vec{a} , \vec{b} のなす角 θ を求めよ。

- (1) $\vec{a} = (-3, 5, -4), \vec{b} = (-1, -2, 2)$
- (2) $\vec{a} = (1, 3, -2), \vec{b} = (2, -4, -5)$

女内積の計算(成分) □=(x1,41,21),==(x2,42,22)のとき、 □・〒= x1x2+414+2122(公式)

(方針)
$$\cos \theta = \frac{\vec{\alpha} \cdot \vec{k}}{|\vec{\alpha}||\vec{k}|}$$
 (定義) 7".

cosOの値を求め、その方程式を解く。

3. 第14章 6-5 P.324

次の空間内の3点A,B,Cが作る \triangle ABCの面積Sを求めよ。

- (1) A(0,0,0), B(1,2,1), C(-2,1,3)
- (2) A (1, -1, -2), B(3, 2, 0), C(2, 1, -1)