微分法 演習プリント No． 1 解答

1．［クリアー数学III 問題150］

－$の$ 関数を微分せよ。ただし，a は正の定数とする。
（1）$y=e^{x \log x}$
（2）$y=10^{\sin x}$
（3）$y=e^{-2 x} \cos 2 x$
（4）$y=\log |\log x|$
（5）$y=\log _{x} a$
（6）$y=\log \left(x+\sqrt{x^{2}+4}\right)$
（7）$y=\log \left|\frac{2 x-1}{2 x+1}\right|$
（8）$y=\log \sqrt{\frac{x^{2}-1}{x^{2}+1}}$
（9）$y=\log \sqrt{\frac{1+\cos x}{1-\cos x}}$
（1）$y^{\prime}=e^{x \log x}(x \log x)^{\prime}$
$\left.=e^{x \log x}\{(x))^{\prime} \log x+x(\log x)^{\prime}\right\}$
$=e^{x \log x}\left(\log x+x \cdot \frac{1}{x}\right)=(\log x+1) e^{x \log x}$
参君 対数の定義 $M=a^{p} \Longleftrightarrow \log _{a} M=p$ から，$M=a^{\log _{a} M}$ が成り立つ。
よって $\quad y=e^{\log x^{x}}=x^{x}$
ここで，真数は正であるから $\quad x>0$
対数微分法を用いて解くこともできる。
（2）$y^{\prime}=10^{\sin x} \log 10 \cdot(\sin x)^{\prime}=10^{\sin x}(\cos x) \log 10$
（3）$y^{\prime}=\left(e^{-2 x}\right)^{\prime} \cos 2 x+e^{-2 x}(\cos 2 x)^{\prime}$
$=e^{-2 x} \cdot(-2) \cdot \cos 2 x+e^{-2 x} \cdot(-\sin 2 x) \cdot 2$
$=-2 e^{-2 x}(\sin 2 x+\cos 2 x)$
（4）$y^{\prime}=\frac{1}{\log x} \cdot(\log x)^{\prime}=\frac{1}{x \log x}$
（5）底の変換公式から $\log _{x} a=\frac{\log a}{\log x}$
よって，$y=(\log a) \cdot \frac{1}{\log x}$ であるから

$$
y^{\prime}=(\log a)\left\{-\frac{(\log x)^{\prime}}{(\log x)^{2}}\right\}=-\frac{\log a}{x(\log x)^{2}}
$$

妵罢 導関数 y^{\prime} の定義域は，$x>0$ かつ $x \neq 1$ から $0<x<1,1<x$
（6）$y^{\prime}=\frac{1}{x+\sqrt{x^{2}+4}} \cdot\left(x+\sqrt{x^{2}+4}\right)^{\prime}$
$=\frac{1}{x+\sqrt{x^{2}+4}} \cdot\left(1+\frac{x}{\sqrt{x^{2}+4}}\right)$
$=\frac{1}{x+\sqrt{x^{2}+4}} \cdot \frac{x+\sqrt{x^{2}+4}}{\sqrt{x^{2}+4}}=\frac{1}{\sqrt{x^{2}+4}}$
（7）$y=\log |2 x-1|-\log |2 x+1|$ であるから

$$
y^{\prime}=\frac{(2 x-1)^{\prime}}{2 x-1}-\frac{(2 x+1)^{\prime}}{2 x+1}=\frac{2}{2 x-1}-\frac{2}{2 x+1}=\frac{2(2 x+1)-2(2 x-1)}{(2 x-1)(2 x+1)}=\frac{4}{4 x^{2}-1}
$$

（8）$y=\frac{1}{2} \log \frac{x^{2}-1}{x^{2}+1}=\frac{1}{2}\left\{\log \left(x^{2}-1\right)-\log \left(x^{2}+1\right)\right\}$

$$
\text { よって } \begin{aligned}
y^{\prime} & =\frac{1}{2}\left\{\frac{\left(x^{2}-1\right)^{\prime}}{x^{2}-1}-\frac{\left(x^{2}+1\right)^{\prime}}{x^{2}+1}\right\} \\
& =\frac{1}{2} \cdot \frac{2 x\left(x^{2}+1\right)-2 x\left(x^{2}-1\right)}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{2 x}{x^{4}-1}
\end{aligned}
$$

涏憲 導関数 y^{\prime} の定義域は，$\frac{x^{2}-1}{x^{2}+1}>0$ から $\quad x<-1,1<x$
（9）$y=\frac{1}{2}\{\log (1+\cos x)-\log (1-\cos x)\}$
よって $y^{\prime}=\frac{1}{2}\left\{\frac{(1+\cos x)^{\prime}}{1+\cos x}-\frac{(1-\cos x)^{\prime}}{1-\cos x}\right\}$
$=\frac{1}{2}\left(\frac{-\sin x}{1+\cos x}-\frac{\sin x}{1-\cos x}\right)$
$=\frac{1}{2} \cdot \frac{-\sin x(1-\cos x)-\sin x(1+\cos x)}{1-\cos ^{2} x}$
$=\frac{-\sin x}{\sin ^{2} x}=-\frac{1}{\sin x}$
閏䚄 導関数 y^{\prime} の定義域は，$\frac{1+\cos x}{1-\cos x}>0$ から $\quad x \neq m \pi \quad(m$ は整数 $)$

2．［クリアー数学III問題152］
関数 $y=\tan x\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$ の逆関数を $f(x)$ とする。
（1）$f(x)$ の定義域，值域を求めよ。
（2）$y=f(x)$ について，$\frac{d x}{d y}$ を y の関数として表せ。
（3）導関数 $f^{\prime}(x)$ を x の関数として表せ。
（1）$y=\tan x\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$ の値域は 実数全体
よって，$f(x)$ の定義域は 実数全体，値域は $\quad-\frac{\pi}{2}<f(x)<\frac{\pi}{2}$
（2）$y=f(x)$ のとき，$x=\tan y$ であるから $\quad \frac{d x}{d y}=\frac{1}{\cos ^{2} y}$
（3）$\frac{d x}{d y}=\frac{1}{\cos ^{2} y}=1+\tan ^{2} y=1+x^{2}$ であるから $\quad f^{\prime}(x)=\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}=\frac{1}{1+x^{2}}$

微分法 演習プリント No． 1 解答

3．［クリアー数学III問題159］

次の方程式で定められる x の関数 y について，$\frac{d y}{d x}$ を求めよ。
（1）$(y+1)^{2}=x^{2}+x$
（2）$x^{2}-x y-y^{2}=1$
（3）$x^{3}+y^{3}-3 x y=0$
（4）$x^{\frac{1}{3}}+y^{\frac{1}{3}}=1$
（1）両辺を x で微分すると $\quad 2(y+1) \cdot \frac{d y}{d x}=2 x+1$

$$
\text { よって, } y \neq-1 \text { のとき } \quad \frac{d y}{d x}=\frac{2 x+1}{2(y+1)}
$$

（2）両辺を x で微分すると $2 x-\left(y+x \cdot \frac{d y}{d x}\right)-2 y \cdot \frac{d y}{d x}=0$
ゆえに $\quad(x+2 y) \frac{d y}{d x}=2 x-y$
よって，$x+2 y \neq 0$ のとき $\quad \frac{d y}{d x}=\frac{2 x-y}{x+2 y}$
（3）両辺を x で微分すると $3 x^{2}+3 y^{2} \cdot \frac{d y}{d x}-3\left(y+x \cdot \frac{d y}{d x}\right)=0$
ゆえに $\quad\left(x-y^{2}\right) \frac{d y}{d x}=x^{2}-y$
よって，$x-y^{2} \neq 0$ のとき $\quad \frac{d y}{d x}=\frac{x^{2}-y}{x-y^{2}}$
（4）両辺を x で微分すると $\frac{1}{3} x^{-\frac{2}{3}}+\frac{1}{3} y^{-\frac{2}{3}} \cdot \frac{d y}{d x}=0$ よって，$x \neq 0, y \neq 0$ のとき $\quad \frac{d y}{d x}=-\frac{x^{-\frac{2}{3}}}{y^{-\frac{2}{3}}}=-\left(\frac{y}{x}\right)^{\frac{2}{3}}$

4．［クリアー数学III 問題164］
$\lim _{k \rightarrow 0}(1+k)^{\frac{1}{k}}=e$ を用いて，次の極限を求めよ。
（1） $\lim _{h \rightarrow 0}(1-4 h)^{\frac{1}{h}}$
（2） $\lim _{h \rightarrow 0} \frac{\log (1+2 h)}{h}$
（3） $\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{x}$
（1）$-4 h=k$ とおくと，$h \rightarrow 0$ のとき $k \rightarrow 0$ であるから
$\lim _{h \rightarrow 0}(1-4 h)^{\frac{1}{h}}=\lim _{k \rightarrow 0}(1+k)^{-\frac{4}{k}}=\lim _{k \rightarrow 0}\left\{(1+k)^{\frac{1}{k}}\right\}^{-4}=e^{-4}=\frac{1}{e^{4}}$
（2） $2 h=k$ とおくと，$h \rightarrow 0$ のとき $k \rightarrow 0$ であるから
$\lim _{h \rightarrow 0} \frac{\log (1+2 h)}{h}=\lim _{k \rightarrow 0} \frac{2}{k} \log (1+k)=\lim _{k \rightarrow 0} 2 \log (1+k)^{\frac{1}{k}}=2 \log e=2$
（3）$\left(\frac{x}{x+1}\right)^{x}=\left(\frac{1}{1+\frac{1}{x}}\right)^{x}=\frac{1}{\left(1+\frac{1}{x}\right)^{x}}$
$\frac{1}{x}=k$ とおくと，$x \rightarrow \infty$ のとき $k \rightarrow+0$ であるから
$\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{x}=\lim _{k \rightarrow+0} \frac{1}{(1+k)^{\frac{1}{k}}}=\frac{1}{e}$

5．［クリアー数学III問題165］

次の極限を求めよ。ただし，a は定数とする。
（1） $\lim _{x \rightarrow 1} \frac{e^{x}-e}{x-1}$
（2） $\lim _{x \rightarrow 2} \frac{1}{x-2} \log \frac{x}{2}$
（3） $\lim _{x \rightarrow a} \frac{\sin ^{2} x-\sin ^{2} a}{x-a}$
（1）$f(x)=e^{x}$ とおくと，$f^{\prime}(x)=e^{x}, f(1)=e$ であるから

$$
\lim _{x \rightarrow 1} \frac{e^{x}-e}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=f^{\prime}(1)=e
$$

（2）$f(x)=\log x$ とおくと，$f^{\prime}(x)=\frac{1}{x}, f^{\prime}(2)=\frac{1}{2}$ であるから

$$
\lim _{x \rightarrow 2} \frac{1}{x-2} \log \frac{x}{2}=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=f^{\prime}(2)=\frac{1}{2}
$$

別解 $x-2=t$ とおくと，$x \rightarrow 2$ のとき $t \rightarrow 0$ であるから

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{1}{x-2} \log \frac{x}{2} & =\lim _{t \rightarrow 0} \frac{1}{t} \log \frac{t+2}{2}=\lim _{t \rightarrow 0} \log \left(1+\frac{t}{2}\right)^{\frac{1}{t}}=\lim _{t \rightarrow 0} \log \left\{\left(1+\frac{t}{2}\right)^{\frac{2}{t}}\right\}^{\frac{1}{2}} \\
& =\log e^{\frac{1}{2}}=\frac{1}{2}
\end{aligned}
$$

（3）$f(x)=\sin ^{2} x$ とおくと，$f^{\prime}(x)=2 \sin x \cos x=\sin 2 x$ であるから $\lim _{x \rightarrow a} \frac{\sin ^{2} x-\sin ^{2} a}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)=\sin 2 a$

