無理関数 演習プリント 解答

1．［クリアー数学III問題13］
次の関数のグラフをかけ。また，その定義域，値域を求めよ
（1）$y=\sqrt{x-2}$
（2）$y=\sqrt{3-x}$
（3）$y=\sqrt{-2 x+3}$
（4）$y=-\sqrt{2 x+2}$
（5）$y=\sqrt{4 x-2}$
（6）$y=-\sqrt{5-3 x}$
（1）$y=\sqrt{x}$ のグラフを x 軸方向に 2 だけ平行移動したもので，図）のようになる。定義域は $x \geqq 2$ ，値域は $y \geqq 0$
（2）$\sqrt{3-x}=\sqrt{-(x-3)}$
よって，$y=\sqrt{-x}$ のグラフを x 軸方向に 3 だけ平行移動したもので， （図）のようになる。
定義域は $x \leqq 3$ ，值域は $y \geqq 0$

（3）$\sqrt{-2 x+3}=\sqrt{-2\left(x-\frac{3}{2}\right)}$
よって，$y=\sqrt{-2 x}$ のグラフを x 軸方向に $\frac{3}{2}$ だけ平行移動したもので，
（図）のようになる。
定義域は $x \leqq \frac{3}{2}$ ，値域は $y \geqq 0$
（4）$-\sqrt{2 x+2}=-\sqrt{2(x+1)}$
よって，$y=-\sqrt{2 x}$ のグラフを x 軸方向に -1 だけ平行移動したもので，
（図）のようになる。
定義域は $x \geqq-1$ ，值域は $y \leqq 0$

（5）$\sqrt{4 x-2}=\sqrt{4\left(x-\frac{1}{2}\right)}=2 \sqrt{x-\frac{1}{2}}$
よって，$y=2 \sqrt{x}$ のグラフを x 軸方向に $\frac{1}{2}$ だけ平行移動したもので，図）のようにな る。
定義域は $x \geqq \frac{1}{2}$ ，值域は $y \geqq 0$
（6）$-\sqrt{5-3 x}=-\sqrt{-3\left(x-\frac{5}{3}\right)}$
よって，$y=-\sqrt{-3 x}$ のグラフを x 軸方向に $\frac{5}{3}$ だけ平行移動したもので，（図）のよう になる。
定義域は $x \leqq \frac{5}{3}$ ，値域は $y \leqq 0$

2．［クリアー数学III問題20］
関数 $y=\sqrt{a x+b}$ が $-1 \leqq x \leqq 3$ の範囲において，最大値 3 ，最小値 1 をとるように，定数 a, b の値を定めよ。
［1］$a>0$ のとき
$y=\sqrt{a x+b}$ は単調に増加するから，条件より

$$
x=-1 \text { のとき } \quad y=1
$$

$$
x=3 \text { のとき } \quad y=3
$$

ゆえに $\quad \sqrt{-a+b}=1, \sqrt{3 a+b}=3$
よって $\quad-a+b=1,3 a+b=9$
これを解いて $\quad a=2, b=3$
これは $a>0$ を満たす。
［2］$a=0$ のとき
この関数は $y=\sqrt{b}$（定数）となり，条件を満たさない。
［3］$a<0$ のとき
$y=\sqrt{a x+b}$ は単調に減少するから，条件より

$$
x=-1 \text { のとき } \quad y=3
$$

$$
x=3 \text { のとき } \quad y=1
$$

ゆえに $\sqrt{-a+b}=3, \sqrt{3 a+b}=1$
よって $\quad-a+b=9,3 a+b=1$
これを解いて $\quad a=-2, b=7$
これは $a<0$ を満たす
［1］～［3］から $\quad a=2, b=3$ または $a=-2, b=7$

無理関数 演習プリント 解答

3．［クリアー数学III 問題19］
次の方程式，不等式を解け。
（1）$\sqrt{x}=-x+2$
（2）$-\sqrt{x+3}=x-3$
4）$\sqrt{x+1}>-x+5$
（5）$\sqrt{x+1} \leqq-x+5$

1）$\sqrt{x}=-x+2 \quad$ ．．．．．．（1）
の両辺を 2 乗すると $\quad x=(-x+2)^{2}$整理して $\quad x^{2}-5 x+4=0$
したがって $\quad x=1,4$
このうち，（1）を満たすのは $\quad x=1$
（2）$-\sqrt{x+3}=x-3 \quad \cdots \cdots .$. （1）
の両辺を 2 乗すると $\quad x+3=(x-3)^{2}$
整理して $\quad x^{2}-7 x+6=0$
したがって $\quad x=1,6$
このうち，（1）を満たすのは $\quad x=1$
（3）$\sqrt{2 x-3}=x-1 \quad \cdots \cdots$ ．．．（1）
の両辺を 2 乗すると $\quad 2 x-3=(x-1)^{2}$整理して $\quad x^{2}-4 x+4=0$
したがって $\quad x=2$
これは（1）を満たす。

（4）$y=\sqrt{x+1} \cdots \cdots$（1）と $y=-x+5 \cdots \cdots$ ．（2） のグラフについて，共有点の x 座標は方程式 $\sqrt{x+1}=-x+5 \quad$ …．．．（3）
の解である。
両辺を 2 乗して $\quad x+1=(-x+5)^{2}$
整理すると $\quad x^{2}-11 x+24=0$
これを解いて $\quad x=3,8$
このうち，（3）を満たすのは $\quad x=3$
不等式の解は，（1）のグラフが直線（2）より上側 にある x の値の範囲であるから，図より $x>3$

参考 不等式 $\sqrt{x+1}>-x+5$ の解は
（1］$-x+5 \geqq 0 \quad$ ．．．．．．（1）かつ $x+1>(-x+5)^{2} \quad$ ．．．．．．（2）
または
［2］$x+1 \geqq 0 \quad$ …．．（3）かつ $-x+5<0 \quad \cdots \cdots .(4)$
を満たす x の値の範囲である。
［1］（1）から $x \leqq 5$ （2）を整理すると $\quad x^{2}-11 x+24<0$
これを解いて $\quad 3<x<8$
これと $x \leqq 5$ との共通範囲は $\quad 3<x \leqq 5$
［2］（3）から $x \geqq-1$ ，（4）から $x>5$
共通範囲は $\quad x>5$
求める x の値の範囲は，$[1]$ ，$[2]$ の和集合であるから $\quad x>3$
（5）（4）から，$y=\sqrt{x+1}$ ．．．．．．（1）と
$y=-x+5 \cdots \cdots$（2）のグラフの共有点の x 座標は， $x=3$ である。
不等式の解は，（1）のグラフが直線（2）より下側に あるか，または共有点をもつような x の値の範囲 であるから，図より $-1 \leqq x \leqq 3$
妵意 関数 $y=\sqrt{x+1}$ の定義域は $x+1 \geqq 0$ より， $x \geqq-1$ であることに注意する。

（6）$y=3 \sqrt{x} \cdots \cdots$（1） と $y=x+2 \cdots \cdots$（2）
のグラフについて，共有点の x 座標は，方程式

$$
3 \sqrt{x}=x+2 \quad \ldots \ldots . . \text { (3) }
$$

の解である。
両辺を 2 乗して $\quad 9 x=(x+2)^{2}$
整理すると $\quad x^{2}-5 x+4=0$
これを解いて $\quad x=1,4$
これらは（3）を満たす。
不等式の解は，（1）のグラフが直線（2）より上側にある x の值の範囲であるから，図より $1<x<4$

4．［クリアー数学III問題34］
方程式 $\sqrt{x+1}=x+a$ が異なる 2 つの実数解をもつときの定数 a の值の範囲を求めよ。
$\sqrt{x+1}=x+a \cdots \cdots$（1）とおく。
（1）が異なる 2 つの実数解をもつのは，$y=\sqrt{x+1}$ のグラフと直線 $y=x+a$ が共有点を 2個もつときである。
（1）の両辺を 2 乗して整理すると

$$
x^{2}+(2 a-1) x+a^{2}-1=0 \quad \cdots \cdots \cdot .(2)
$$

この判別式を D とすると

$$
D=(2 a-1)^{2}-4\left(a^{2}-1\right)=-4 a+5
$$

2 つのグラフが接するとき，$D=0$ であるから $\quad a=\frac{5}{4}$

このとき（2）の解は $\quad x=-\frac{3}{4}$

これは（1）を満たす。
また，$y=x+a$ のグラフが点 $(-1,0)$ を通るとき $0=-1+a$
すなわち $\quad a=1$
よって，右の図から，共有点を 2 個もつときの a の
值の範囲は $\quad 1 \leqq a<\frac{5}{4}$

