H③ 12番(4)の解答

12 〇を原点とする座標平面上に

放物線 $C_1: y = x^2$

$$\exists C_2 : x^2 + (y-a)^2 = 1 \ (a \ge 0)$$

がある。 C_2 の点(0, a+1)における接線と C_1 が2点A,Bで交わり、 Δ OABが C_2 に外接しているとする。次の問いに答えよ。

- (1) aを求めよ。
- (2) 点(s, t) を(-1, a), (1, a), (0, a-1) と異なる C_2 上の点とする。そして点(s, t) における C_2 の接線と C_1 との 2 つの交点を $P(\alpha, \alpha^2)$, $Q(\beta, \beta^2)$ とする。このとき、 $(\alpha \beta)^2 \alpha^2 \beta^2$ はs, t によらない定数であることを示せ。
- (3) (2)において、点 $P(\alpha, \alpha^2)$ から C_2 への 2 つの接線がふたたび C_1 と交わる点を $Q(\beta, \beta^2)$, $R(\gamma, \gamma^2)$ とする。 $\beta+\gamma$ および $\beta\gamma$ を α を用いて表せ。
- (4) (3)の2点Q, R に対し、直線QR はC,と接することを示せ。

(1)
$$\Omega = 2$$

(2)
$$A = 2 + 1$$
, $C_2 : \chi^2 + (\gamma - 2)^2 = 1$

直線 PBの方程式は.

$$y = \frac{\alpha^2 - \beta^2}{\alpha - \beta} (\alpha - \alpha) + \alpha^2 + \beta, \quad y = (\alpha + \beta) \alpha - \alpha \beta$$

(3)
$$\beta + \gamma = \frac{2\alpha}{1-\alpha^2}$$
, $\beta \gamma = \frac{\alpha^2-3}{1-\alpha^2}$

(4) (強) d=rを示す

直線QRの方程式は、(2)の①の dをといずきかえて、

$$(\beta+r)x-y-\beta r=0$$

(3)
$$\neq y$$
, $\frac{2d}{1-d^2} \propto -4 - \frac{d^2-3}{1-d^2} = 0$

$$\therefore 2dx + (d^2 - 1)y - d^2 + 3 = 0$$

よって. 円C2の中心10,2)と直線内の距離は、

$$\frac{\left|2\left(d^{2}-1\right)-d^{2}+3\right|}{\sqrt{4d^{2}+\left(d^{2}-1\right)^{2}}} = \frac{\left|d^{2}+1\right|}{\sqrt{\left(d^{2}+1\right)^{2}}} = \frac{d^{2}+1}{d^{2}+1} = 1$$

これは円C2の半経と等いいので、直線QRは、円C2に接するm